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FV in the SM and in the MSSM
n In the SM, flavor violation arises from the Yukawa sector:

parameters δ.
For a degenerate spectrum, the mass insertions δ are the appropriate way to parametrize

new flavor-violating effects. The coefficients δ describe the small deviations from universality
but, lacking the knowledge of a complete theory of soft terms, they can only be treated as free
parameters and do not provide information on the required experimental sensitivity to discover
new-physics effects. The analogous quantities in the hierarchical scheme, δ̂, are related either to
the m̃!/m̃h hierarchy or to CKM angles, because of the special assumptions made on the pattern
of soft terms. Therefore the quantities δ̂ are associated to physical parameters and they provide
a defined target for the required experimental sensitivity. In particular, we expect that each δ̂i3

is larger than the maximum between m̃2
!/m̃2

h and the CKM elements V ∗
3i. The results obtained

in Table 1 show that present experiments have not yet probed u ↔ c transitions at the level
required by δ̂i3 = V ∗

3i, and have only marginally tested the case of d ↔ s and d ↔ b transitions.
On the other hand, experiments have begun to explore the crucial range of values for δ̂sb in s↔ b
transitions. In this respect, it is tantalizing that there are claims for a deviation from the SM
predictions in the phase of Bs mixing, φBs [11, 12, 13]. Hierarchical soft terms could account for
such new-physics effect, compatibly with the other constraints in the b-s system. Actually we have
proved that, because of the correlation between ∆F = 1 and ∆F = 2 transitions, hierarchical
soft terms can lead to larger values of φBs than degenerate ones, for an equal value of tan β.
Independently of the reliability of the alleged anomaly in φBs , the hypothesis of hierarchical soft
terms represents an interesting benchmark to confront experimental searches in flavor physics.
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Appendix

In this Appendix we compute the fermion-sfermion mixing matrix W in the limit of hierarchical
soft terms. We also discuss the conditions under which the heavy-squark contribution can be
neglected in the amplitude of eq. (17) and the natural size of the flavor-violating parameters δ̂.

In a general basis in which the quark mass matrix is not necessarily diagonal,W is a combina-
tion of the matrices that diagonalize the quark and squark mass matrices M andM2 respectively,

W =
(

UL 0
0 UR

)
W ′, URMU †

L = diagonal, W ′†M2W ′ = diagonal. (24)

Because the relevant amplitudes will turn out to be dominated by loops with only third-
generation squark exchange, we are justified to neglect chiral-violating entries in the squark mass
matrix involving first or second generation indices. Under this assumption and working at leading
order in an expansion in inverse powers of the heavy-squark mass scale, we obtain

W ′ =





ŨL δ̂LL cos θ 0 −δ̂LL sin θeiφ

−δ̂LL†ŨL cos θ 0 − sin θeiφ

0 δ̂RR sin θe−iφ ŨR δ̂RR cos θ

0 sin θe−iφ −δ̂RR†ŨR cos θ




, (25)
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An upper limit on δ̂LL is derived by observing that the light left squark receives a contribution
from the heavy sector to its mass square equal to

− δ̂LL†M2
hLδ̂LL cos2 θ − δ̂RR†M2

hRδ̂RR sin2 θ ∼ O(δ̂LL2m̃2
h). (32)

Thus, barring special cancellations, the hierarchical separation between the light and heavy sectors
is maintained only if

δ̂LL <∼
m̃!

m̃h
. (33)

The natural range for δ̂LL (or δ̂RR) is defined by eq. (31) and eq. (33). In the absence of any
GIM suppression in the heavy sector (i.e. when ∆h ≈ 1), the natural values of δ̂LL are nearly
inconsistent with the condition in eq. (30). However, as discussed in the text, the constraint from
εK require that ∆h < 10−2m̃h/(3 TeV). In presence of a mechanism justifying the smallness of
∆h (like, for instance, an approximate U(2) symmetry), the condition in eq. (30) can be satisfied.

When the ratio m̃h/m̃! becomes very large, the quark rotation angles in UL,R can dominate
over those of W ′ in eq. (24). In this case, eq. (30) is automatically satisfied, and the assumption
of neglecting heavy squarks in the loop diagram is perfectly justified. Assuming that the CKM
matrix V = Uu

LUd†
L is dominated by the rotation in the down sector, we obtain

δ̂LL
db ≈ V ∗

td, δ̂LL
sb ≈ V ∗

ts. (34)

Thus, excluding unexpected cancellations, δ̂LL cannot be smaller than the maximum between
m̃2

!/m̃2
h and what given in eq. (34). Although we cannot directly relate UR to CKM angles, we

expect that the result in eq. (34) will hold approximately for δ̂RR too if, for instance, the quark
mass matrix is nearly symmetric.
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In the allowed range tanβ > 1, it follows that mẽL > mν̃e and md̃L
> mũL , with the magnitude of the

splittings constrained by electroweak symmetry breaking.
Let us next consider the masses of the top squarks, for which there are several non-negligible

contributions. First, there are squared-mass terms for t̃∗Lt̃L and t̃∗Rt̃R that are just equal to m2
Q3

+ ∆ũL

and m2
u3

+ ∆ũR , respectively, just as for the first- and second-family squarks. Second, there are
contributions equal to m2

t for each of t̃∗Lt̃L and t̃∗Rt̃R. These come from F -terms in the scalar potential
of the form y2

t H
0∗
u H0

u t̃∗Lt̃L and y2
t H

0∗
u H0

u t̃∗Rt̃R (see Figures 5.2b and 5.2c), with the Higgs fields replaced
by their VEVs. (Of course, similar contributions are present for all of the squarks and sleptons, but
they are too small to worry about except in the case of the top squarks.) Third, there are contributions
to the scalar potential from F -terms of the form −µ∗ytt̃t̃H0∗

d +c.c.; see eqs. (5.6) and Figure 5.4a. These
become −µ∗vyt cos β t̃∗Rt̃L +c.c. when H0

d is replaced by its VEV. Finally, there are contributions to the
scalar potential from the soft (scalar)3 couplings att̃Q̃3H0

u +c.c. [see the first term of the second line of
eq. (5.12), and eq. (5.50)], which become atv sin β t̃Lt̃∗R + c.c. when H0

u is replaced by its VEV. Putting
these all together, we have a squared-mass matrix for the top squarks, which in the gauge-eigenstate
basis (t̃L, t̃R) is given by

Lstop masses = − ( t̃∗L t̃∗R )m2
t̃

(
t̃L
t̃R

)
(7.69)

t̃R) is given by

Lsdown masses = − ( d̃†
L d̃†

R )m2
d̃

(
d̃L

d̃R

)
(7.70)

where

m2
d̃

=
(

m2
Q + m2

d + ∆d̃L
v(a∗d sinβ − µyd cos β)

v(ad sinβ − µ∗yd cos β) m2
d

+ m2
d + ∆d̃R

)
. (7.71)

This hermitian matrix can be diagonalized by a unitary matrix to give mass eigenstates:
(

t̃1
t̃2

)
=

(
ct̃ −s∗

t̃
st̃ ct̃

) (
t̃L
t̃R

)
. (7.72)

Here m2
t̃1

< m2
t̃2

are the eigenvalues of eq. (7.71), and |ct̃|2 + |st̃|2 = 1. If the off-diagonal elements
of eq. (7.71) are real, then ct̃ and st̃ are the cosine and sine of a stop mixing angle θt̃, which can be
chosen in the range 0 ≤ θt̃ < π. Because of the large RG effects proportional to Xt in eq. (5.63) and
eq. (5.64), at the electroweak scale one finds that m2

u3
< m2

Q3
, and both of these quantities are usually

significantly smaller than the squark squared masses for the first two families. The diagonal terms m2
t

in eq. (7.71) tend to mitigate this effect somewhat, but the off-diagonal entries will typically induce
a significant mixing, which always reduces the lighter top-squark squared-mass eigenvalue. Therefore,
models often predict that t̃1 is the lightest squark of all, and that it is predominantly t̃R.

A very similar analysis can be performed for the bottom squarks and charged tau sleptons, which
in their respective gauge-eigenstate bases (b̃L, b̃R) and (τ̃L, τ̃R) have squared-mass matrices:

m2
b̃

=
(

m2
Q3

+ ∆d̃L
v(a∗b cos β − µyb sinβ)

v(ab cos β − µ∗yb sinβ) m2
d3

+ ∆d̃R

)

, (7.73)

m2
τ̃

=
(

m2
L3

+ ∆ẽL v(a∗τ cos β − µyτ sinβ)
v(aτ cos β − µ∗yτ sinβ) m2

e3
+ ∆ẽR

)
. (7.74)

These can be diagonalized to give mass eigenstates b̃1, b̃2 and τ̃1, τ̃2 in exact analogy with eq. (7.72).
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


d̃L

s̃L

b̃L



 =




d̃L1

d̃L2

d̃L3



 (7.71)

d̃R =




d̃R

s̃R

b̃R



 =




d̃R1

d̃R2

d̃R3



 (7.72)
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and m2
u3
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n Expand in off- diagonal elements of squark mass matrix:

Model independent analysis

M
2

= M
2

0 + δM
2

n Degeneracy assumption:

δij ≡
(δM2)ij

m̃2
x =

m̃2

M2

A(∆F = 1) = xf (1)(x)δij

n f,g: loop functions (flavor conserving, process dependent) 

n     : flavor violating parameters (process independent)δij

(a)

γ

e−µ− B̃

µ̃R ẽR

(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR

Figure 5.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m2
L, and ae, respectively.

g̃ g̃

d̃R s̃R

s̃∗R d̃∗R

d s

s̄ d̄

(a)

g̃ g̃

d̃L s̃L

s̃∗R d̃∗R

d s

s̄ d̄

(b)

g̃ g̃

d̃L s̃R

s̃∗R d̃∗L

d s

s̄ d̄

(c)

Figure 5.7: Some of the diagrams that contribute to K0 ↔ K
0

mixing in models with strangeness-
violating soft supersymmetry breaking parameters (indicated by ×). These diagrams contribute to
constraints on the off-diagonal elements of (a) m2

d
, (b) the combination of m2

d
and m2

Q, and (c) ad.

the bino B̃ is nearly a mass eigenstate. This result is to be compared to the present experimental upper
limit Br(µ → eγ)exp < 1.2 × 10−11 from [106]. So, if the right-handed slepton squared-mass matrix
m2

e were “random”, with all entries of comparable size, then the prediction for Br(µ → eγ) would be
too large even if the sleptons and bino masses were at 1 TeV. For lighter superpartners, the constraint
on µ̃R, ẽR squared-mass mixing becomes correspondingly more severe. There are also contributions to
µ → eγ that depend on the off-diagonal elements of the left-handed slepton squared-mass matrix m2

L,
coming from the diagram shown in fig. 5.6b involving the charged wino and the sneutrinos, as well as
diagrams just like fig. 5.6a but with left-handed sleptons and either B̃ or W̃ 0 exchanged. Therefore,
the slepton squared-mass matrices must not have significant mixings for ẽL, µ̃L either.

Furthermore, after the Higgs scalars get VEVs, the ae matrix could imply squared-mass terms that
mix left-handed and right-handed sleptons with different lepton flavors. For example, LMSSM

soft contains
ẽaeL̃Hd + c.c. which implies terms −〈H0

d〉(ae)12ẽ∗Rµ̃L − 〈H0
d〉(ae)21µ̃∗

RẽL + c.c. These also contribute
to µ → eγ, as illustrated in fig. 5.6c. So the magnitudes of (ae)12 and (ae)21 are also constrained
by experiment to be small, but in a way that is more strongly dependent on other model parameters
[85]. Similarly, (ae)13, (ae)31 and (ae)23, (ae)32 are constrained, although more weakly [86], by the
experimental limits on Br(τ → eγ) and Br(τ → µγ).

There are also important experimental constraints on the squark squared-mass matrices. The

strongest of these come from the neutral kaon system. The effective Hamiltonian for K0 ↔ K
0

mixing
gets contributions from the diagrams in Figure 5.7, among others, if LMSSM

soft contains terms that mix
down squarks and strange squarks. The gluino-squark-quark vertices in Figure 5.7 are all fixed by
supersymmetry to be of QCD interaction strength. (There are similar diagrams in which the bino and
winos are exchanged, which can be important depending on the relative sizes of the gaugino masses.)
For example, suppose that there is a non-zero right-handed down-squark squared-mass mixing (m2

d
)21 in

the basis corresponding to the quark mass eigenstates. Assuming that the supersymmetric correction
to ∆mK ≡ mKL − mKS following from fig. 5.7a and others does not exceed, in absolute value, the
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For example, suppose that there is a non-zero right-handed down-squark squared-mass mixing (m2

d
)21 in

the basis corresponding to the quark mass eigenstates. Assuming that the supersymmetric correction
to ∆mK ≡ mKL − mKS following from fig. 5.7a and others does not exceed, in absolute value, the
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A(∆F = 2) =
x2

3!
g(3)(x)δ2

ij

δ
RR
µe

(

δ
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)2
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2
I6×6



n In the Hierarchical scenario the LL and RR soft terms have the following 
structure:

Hierarchical Soft Terms

A(∆F = 1) = f(x)δ̂ij

degenerate limit of the mass insertion approximation, the one widely used in the literature,
does not really represent the general case. The latter can be better represented by the range
between the two complementary extremes, the degenerate and the hierarchical ones.

Another interesting point is about the relation between the s ↔ d, b ↔ d, b ↔ s !F = 2

processes. In the degenerate case, such processes are proportional (for given chiralities and
charge of the gaugino involved) to the three a priori independent quantities " 2

sd, "
2
bd , "

2
bs.

A (partial) correlation among the three processes could in principle be generated by higher
order contributions to the s ↔ d transitions, e.g. the ones proportional to " 2

sb"
2
bd . However,

such contributions turn out to be always small. This is because of the limits on "bs and
"bd and because the four-insertions " 2

sb"
2
bd contribution is proportional to (x4/5!)g(5), i.e. it

is suppressed by the factor 5! = 120. The analysis of the hierarchical case shows that the
latter conclusion crucially depends on the degeneracy assumption. In the hierarchical limit,
in fact, the correlation does arise already at the leading order in the expansion, since "̂sd =
"̂sb"̂bd |Wbb̃|2 ≈ "̂sb"̂bd . Moreover, the higher-order contribution proportional to "̂ 2

sb"̂
2
bd is now

proportional to g(1)(x), with no factorials involved.

2 Mass insertions in the hierarchical case

Let us discuss in more detail the approximations leading to the mass insertion approximation
in the hierarchical case. We assume that the sfermion masses have the following structure
(analogously for the A-terms):

m̃2 =





h11 h12 a1

h21 h22 a2

ā1 ā2 l3



 , (10) eq:softmasses

where the “h” block is heavy, and the remaining entries are much lighter. In particular, the
eigenvalues are l ! TeV2, h1,h2 # l. The lightest eigenvalue gets a non-negligible contribution
due to mixing,

l ≈ l3 −
a1ā1

h1

−
a2ā2

h2

, (11) eq:lightmass

from which we see that, barring accidental cancellations, l " bib̄i/hi.

Let us now consider the 6×6 sfermion mass matrices. The heavy 4×4 sector involving the
first and second family only has a simple structure: the LL and RR blocks are dominated by
the soft sfermion masses and the LR and RL blocks are suppressed by the electroweak scale.
The 4 heavy sfermion masses are therefore given at first order by the heavy eigenvalues of the
soft sfermion masses (h1,2 in the notation used above). We denote them by m̃2

L1,L2,R1,R2. In the
light 2×2 sector involving the third family only we can have as usual a significant mixing in the
stop sector and in the sbottom and stau sector if tan# is large. We denote the corresponding
eigenvalues with m̃2

1,2. The exact diagonalisation of M 2 therefore gives

M 2 = W Diag(m̃2
L1,m̃

2
L2,m̃

2
R1,m̃

2
R2,m̃

2
1,m̃

2
2)W

†. (12) eq:exact

3

Where the “h” block is heavy and the 
remaining entries are much lighter.

Motivations:
n Complementary to degenerate assumption

n If we start with a degenerate condition at very high energy, we end up to a split situation at low 
energy because of the Yukawa coupling of the 3rd family

n Welcome to alleviate SUSY flavor problem

x =
m̃2

3

M2A(∆F = 2) = g(1)(x)δ̂2
ij

δ̂LL
bd , δ̂LL

bd , δ̂RR
bd , δ̂RR

bd
There are only 4 flavor violating insertions:

δ̂
LL
ds ≡ δ̂

LL
db δ̂

LL
bs

Suppression in the 1-2 sector 

The first two families can be naturally 
heavier with respect to the 3rd one.
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Figure 4: 95% CL bounds on the real and imaginary parts of δLL
sb (left, blue) and δ̂LL

sb (right,
red) from the measurements of ∆mBs (lighter shading) and BR(B → Xsγ) (darker shading) for
m̃ = M3 = µ = 350GeV and tanβ = 10. Switching the sign of µ approximately corresponds to
switching the sign of Re(δLL

sb ) and Re(δ̂LL
sb ) in the two figures. In the background, the contour

lines of the phase φBs are shown. The darker regions correspond to the 90% CL range presently
favoured by the experiment [13]. The axis of the two figures are chosen in such a way that the
contour lines are the same for the degenerate and hierarchical cases.

cancellation: ∆mBs = 2|ASM
s +ANP

s e2iφNP
s |, where ANP

s e2iφNP
s ∼ −2ASM

s . Our recipe “empirically”
discards such possibilities, and it seems appropriate for the purpose of calculating the bounds in
Table 1.

Finally, we show in Fig. 5 the bound on the c ↔ u transitions obtained from D0–D̄0 mix-
ing. The theoretical prediction for the SM contribution to the mixing amplitude is affected by
a large uncertainty due to long-distance contributions and it is assumed to lie in the interval
(−0.02, 0.02) ps−1 [28], with flat probability distribution. We translate in this case the likelihood
in a bound on |δ| by considering the one-dimensional section of the two-dimensional likelihood
along the | Re(δ)| = | Im(δ)| line.

In the hierarchical case, the bound from the s↔ d transitions apply to the product δ̂LL
db δ̂LL∗

sb ≡
δ̂LL
ds . It is therefore possible to compare that bound with the indirect one obtained from the

constraints on δ̂LL
sb and δ̂LL

db . It turns out that the combined bound is stronger than the direct
one in the case of ∆mK but not in the case of εK .

If the parameters δ̂ are related to the hierarchy according to the relation δ̂ ∼ m̃2
"/m̃2

h, from

13

∆MBs

φBsB → Xsγ, ,

Degenerate Spectrum Hierarchical Spectrum



Comments and Summary

n Heavy first two family are not incompatible with naturalness

n Welcome to alleviate the SUSY flavor problem

n Useful to describe scenarios where the mass separation is moderate 
but sufficient to make the degenerate assumption a poor starting point. 
Which is somewhat expected because of U(3) breaking by Yukawa.

n Complementary to the degeneracy assumption in a general study of 
SUSY flavor effects, with prediction different by factor O(1-10)

n Predictions: distinct correlations between different observables.


