

$B \to K^* \mu^+ \mu^-$: SM and Beyond

Aoife Bharucha with W. Altmannshofer, Patricia Ball, A.J. Buras, D. Straub and M. Wick (arXiv:0811.1214 [hep-ph])

IPPP/TU, Munich

XLIVth Rencontres de Moriond, 9th March 2009

Soon Launching Expedition to 14TeV

Aoife Bharucha (IPPP/TU, Munich)

 $B \to K^* \mu^+ \mu^-$

Soon Launching Expedition to 14TeV

 $B \to K^* \mu^+ \mu^-$

- Angular Observables via B Physics Tool Box
- Major Milestones and Recent Developments
- Effects of Different categories of NP models on Observables
- Some Concrete Examples

Angular Observables

....where $I(q^2, \theta_l, \theta_K, \phi) =$

 $I_1^s \sin^2 \theta_K + I_1^c \cos^2 \theta_K + (I_2^s \sin^2 \theta_K + I_2^c \cos^2 \theta_K) \cos 2\theta_l$ $+ I_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + I_4 \sin 2\theta_K \sin 2\theta_l \cos \phi$ $+ I_5 \sin 2\theta_K \sin \theta_l \cos \phi + (I_6^s \sin^2 \theta_K + I_6^c \cos^2 \theta_K) \cos \theta_l$ $+ (I_7 \sin \theta_l + I_8 \sin 2\theta_l) \sin 2\theta_K \sin \phi + I_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi$

Relating I's to New Physics

FIND PREDICTIONS IN TERMS OF FORM FACTORS, WILSON COEFFS USING QCD FACTORIZATION

HADRONIC INFORMATION LCSR CALCULATION (LONG DISTANCE) AIM AT NNLL ACCURACY MAY CONTAIN NEW PHYSICS (SHORT DISTANCE)

WEAK ANNIHILATION + $O(\alpha_s)$ CORRECTIONS

A B Physicists ToolBox

EFFECTIVE FIELD THEORIES

- Disentangle physics governed by different mass scales
- Write \mathcal{L} in terms of 'Effective Operators' and Effective Coupling Constants known as 'Wilson Coefficients'

$$\mathcal{L} = \sum_i C_i O_i$$

For $B \to K^*(\to K^-\pi^+)\mu^+\mu^-$, important Operators are.. Electromagnetic Dipole O_7 Vector/Axial Current $O_{9(10)}$

A B Physicists ToolBox

HADRONIC MATRIX ELEMENTS

eg. (B|J|K*) described by Form Factors
QCD Sum Rules on the Light Cone¹/Lattice QCD

Aoife Bharucha (IPPP/TU,Munich)

Major Milestones and Recent Developments

- 1999: Ali et al. Naive Factorization hep-ph/9910221
- 2001/4: Beneke et al. full QCDF calculations hep-ph/0412400
- 2008: Bobeth et al. CP Asymmetries arXiv:0805.2525[hep-ph]
- 2008: Egede et al. New Observables arXiv:0807.2589[hep-ph]

Emphasize CP Conserving Effects

$$S_i^{(a)} = \frac{I_i^{(a)} + \bar{I}_i^{(a)}}{d(\Gamma + \bar{\Gamma})/dq^2}$$

d d y

March 8, 2009

Emphasize CP Violating Effects

$$A_i^{(a)} = \frac{I_i^{(a)} - \bar{I}_i^{(a)}}{d(\Gamma + \bar{\Gamma})/dq^2}$$

What will the Flavour Telescope see?

FOCUS ON ADDITIONAL.

- Operators eg. Scalar
- CP Violation
- Flavour structure

Keeping in Mind Bounds from..

- $B_s \rightarrow \mu^+ \mu^-$
- EDM's, CP Asymmetries....
- $B \to X_s \gamma$, $B \to X_s \mu^+ \mu^-$

What will the Flavour Telescope see?

FOCUS ON ADDITIONAL.

- Operators eg. Scalar
- CP Violation
- Flavour structure

Keeping in Mind Bounds from..

- $B_s \to \mu^+ \mu^-$
- EDM's, CP Asymmetries....
- $B \to X_s \gamma$, $B \to X_s \mu^+ \mu^-$

What kind of New Operators?

 $B \rightarrow K^* \mu^+ \mu^-$

New Physics via Wilson Coefficients

	Model	Additional	CP/Flavour	
		Operators	Violation	
	Constrained MFV	No	No	
	MFV MSSM	O_S, O_P	No	
	Flavour Blind MSSM	O_S, O_P	Yes/No	
	General MSSM	O_S, O_P, O_7'	Yes	
	Littlest Higgs +T Parity	No	Yes	

Aoife Bharucha (IPPP/TU, Munich)

 $B \rightarrow K^* \mu^+ \mu^-$

MFV

- Effects for CMFV at most 50%
- Correlate zeros of S_4 , S_5 , S_6^s with $B(b \rightarrow s\gamma)$
- In MSSSM with MFV Scalar Operators affect

MFV

- Effects for CMFV at most 50%
- Correlate zeros of S_4 , S_5 , S_6^s with $B(b \rightarrow s\gamma)$
- In MSSSM with MFV Scalar Operators affect S_6^c

Model Independent Correlation

Flavour-Blind MSSM

Bound on C_7 from $b \rightarrow s\gamma$ weakened if complex FBMSSM has additional CP violating phases..

General MSSM

- Large no. of free parameters \Rightarrow Concentrate on complex C'_7
- Generate C'_7 via down squark gluino loops
- Sizeable effects in $S_{4/5/6}^{(i)}, A_{7/8}$, and uniquely in S_3/A_9

LHT

- Smaller effects DESPITE complex phases
- C_7^{np} small, but large complex C_9^{np} , C_{10}^{np}
- Most sensitive: A₇ and A₈

Summary

• ${\bf B}\to \bar{{\bf K}}^*\mu^+\mu^-$ will provide a multitude of sensitive observables at the LHC

• Visible effects at the LHC: LHCb, ATLAS, CMS Full Angular Distribution will be measured, deviations from SM

Summary

$\bullet~B\to \bar{K}^*\mu^+\mu^-$ will provide a multitude of sensitive observables at the LHC

		Messure
FBMSSM	Wilson coefficients	Largest effect in /Zero
X	C_7, C_7'	$S_1^s, S_1^c, S_2^s, S_2^c, S_3^s, S_4^s, S_5^s, S_6^s$
CLECCL		$A_7, A_8, A_9, \blacksquare$ Sensitive to C7'
GMSSM		$BR(B \to X_s \gamma), BR(B \to X_s \mu^+ \mu^-)$
	$C_9, C'_9, C_{10}, C'_{10}$	$S_1^s, (S_1^c, S_2^s), S_2^c, S_3, S_4, S_5, S_6^s,$
/.		$A_7, A_8, A_9,$ Suppressed in the SM
LHT		$BR(B \to X_s \mu^+ \mu^-)$
,	$C_S - C'_S$	S_6^c , \triangleleft Zero in SM
MFVMSSM	a	$BR(B_s \to \mu^+ \mu^-)$
	$C_P - C'_P$	$S_1^c + S_2^c,$
		$BR(B_s \to \mu^+ \mu^-)$

 Visible effects at the LHC: LHCb, ATLAS, CMS Full Angular Distribution will be measured, deviations from SM

Aoife Bharucha (IPPP/TU, Munich)

 $B \rightarrow K^* \mu^+ \mu^-$

Summary

$\bullet~B\to \bar{K}^*\mu^+\mu^-$ will provide a multitude of sensitive observables at the LHC

• Visible effects at the LHC: LHCb, ATLAS, CMS Full Angular Distribution will be measured, deviations from SM will be seen

Aoife Bharucha (IPPP/TU, Munich)