

Searches for New Physics at the Tevatron in Photon and Jet Final States

Shin-Shan Eiko Yu Fermi National Accelerator Laboratory for the CDF and D0 Collaborations

Rencontres de Moriond EW 2009

The Magnificent Seven Objects

This talk will focus on the searches in "photon + X" or "jet/b-jet + X" final states.

Shin-Shan Yu

Analyses Breakdown

- 2 Electrons/Photons or 2 Jets
 - Extra Dimension
 - Quark Compositeness
- Jets + Leptons
 - Leptoquarks
 - RS Graviton, W', Z'
- Photons or b-Jets + Missing E_T
 - Large Extra Dimension
 - > Supersymmetry
- Photons + Jets + X (not included in this talk)
 - Signature-based search

Shin-Shan Yu

What Could We Do with Two Objects?

- 1. Invariant Mass
- 2. Angular Distributions

 $\sigma_{\text{modified}} = f_{SM} + f_{NP},$ where for Large Extra Dimension $f_{NP} = h(F/M_S^4)$ Quark Compositeness $f_{NP} = h(\lambda/\Lambda^2)$ TeV⁻¹ Extra Dimension $f_{NP} = h(1/M_c^2)$

Large Extra Dimension (LED) 101

- Aim to solve hierarchy between EW (1 TeV) and Plank scales (10¹⁶ TeV)
- n_d extra large spatial dimensions which are compactified on a scale R
- SM fields confined to 4-dim, graviton propagates in the (4+ n_d) bulk
- Mass splitting small enough to integrate all KK modes (meV-MeV)

 $\sigma_{\text{modified}} = f_{SM} + f_{NP},$ where $f_{NP} = h(F/M_s^4)$ M_s : theory cutoff (~ fundamental Plank scale $M_D \sim \text{TeV}$)

Shin-Shan Yu

LED in ee, $\gamma\gamma$

1.1/fb

- Sensitive to theory cutoff M_s
- Look for deviations in the 2D di-FM mass and $|\cos\theta^*|$ distributions

GRW: M_s > 1.62 TeV HLZ: $M_s > 2.09 (1.29)$ TeV for $n_d=2 (7)$

PRL 102, 051601 (2009)

(cos(0)

0.6

0.4

0.8

Shin-Shan Yu

Searches in Photons and Jets

1000 Գր

0.2

New Physics in dijet Events

Shape of the dijet angular distributions as a function of dijet mass

- Sensitive to new physics at high mass
- Insensitive to theoretical uncertainties (e.g. renormalization scale)

 $\chi_{dijet} = \exp(|y_1 - y_2|) \approx \frac{1 + \cos\theta^*}{1 - \cos\theta^*}$

- Quark Compositeness $(q^* \rightarrow qg)$ > Λ > 2.46 (2.42) TeV for λ = +1 (-1)
- ADD Large Extra Dimension ➤ GRW: M_s > 1.54 TeV
- TeV⁻¹ Extra Dimension
 - X-section modified due to the exchange of virtual KK excitations of SM Gauge Bosons
 - > Compactification scale $M_c > 1.35$ TeV

Searches in Photons and Jets

0.7/fb

Leptoquarks 101

- Couples directly to a quark and a lepton
- Predicted by
 - > GUT
 - Extended Technicolor
 - R-parity violating SUSY
 - Compositeness
- Spin-0 or spin-1 (only scalars today)
- Charge Q = 1/3, 2/3, 4/3, 5/3
- Focus on pair production
 - ≻ qq or gg
 - Cross-section only depends on M_{LQ}
- Couples to a single generation
- Common variable to distinguish signal from background: S_T
 - > Scalar sum p_T of 4 objects

 $\beta \equiv BR(LQ \rightarrow \ell j)$ $\sigma(\nu\nu j j) \propto (1 - \beta)^{2}$ $\sigma(\ell\ell j j) \propto \beta^{2}$ $\sigma(\ell\nu j j) \propto 2\beta(1 - \beta)$

Shin-Shan Yu

New Physics in WZ, WW (jj+I ∉_T) 2.9/fb

- WZ or WW resonance in lepton + jets channel
 - > BR(W/Z \rightarrow jj) > 6 BR(W/Z \rightarrow Iv, II)
 - > 2 or 3 jets
- Optimize the requirements on ME_T, E_T of lepton, and each jet for each mass point
- Limits on various resonances
 - RS Graviton > 607 GeV/c²
 - ➢ W' 284-515 GeV/c² excluded
 - Z' 247-545 GeV/c² excluded
- First time to look for RS Graviton, W', and Z' in WZ, WW resonances

Large Extra Dimension (LED) 102

- Aim to solve hierarchy between EW (1 TeV) and Plank scales (10¹⁶ TeV)
- n_d extra large spatial dimensions which are compactified on a scale R
- SM fields confined to 4-dim, graviton propagates in the (4+ n_d) bulk
- Mass splitting small enough to integrate all KK modes (meV-MeV)

Shin-Shan Yu

LED in Mono-photon + $\not\!\!\!E_{\tau}$

How to suppress cosmic rays and beam halos?

CDF

2.0 fb⁻¹

- Photon timing in ECAL
- **Topological cuts**
 - Low-pt track multiplicity, angle between muon hit and photon, energy deposition in the calorimeter

D0

2.7 fb⁻¹

- 5 Measurements in ECAL
- Impact parameter from the primary vertex
 - \succ Cut on z distance
 - Estimate remaining background with x-y distance

Shin-Shan Yu

GMSB in $\gamma\gamma$ + ME_T

Gauge-mediated SUSY breaking

- Messengers coupled to the source of SUSY breaking and SUSY particles
- LSP is gravitino
- NLSP neutralino

 $\widetilde{\chi}_1^0 \to \gamma \widetilde{G}$

- Focus on low-lifetime neutralino
- Optimize on MetSig, H_T , $\Delta \phi(\gamma_1, \gamma_2)$
- Obs: 1 evt, Exp: 0.62 ± 0.29 evt $\mathbf{M}(\widetilde{\chi}_1^0) > 138 \, \mathrm{GeV/c^2} \text{ for } \tau(\widetilde{\chi}_1^0) = 0 \, \mathrm{ns}$

Shin-Shan Yu

Searches in Photons and Jets

2.0/fb

Shin-Shan Yu

 \widetilde{b} from \widetilde{g} Decay (bbbb + ME_T)

- σ (gluino) ~ 10 σ (sbottom)
 - If sbottom is light enough, mainly produced via gluino decay
 - 4 bjets and large missing energy
 - Complimentary to the search of direct sbottom pair production
- QCD multi-jet background from data
- Require 2 b-tags, large missing E_T
- Apply cuts on NN output to further suppress multi-jet and ttbar backgrounds

Shin-Shan Yu

Searches in Photons and Jets

2.5/fb

Conclusion and Outlook

- Both CDF and D0 have extensive programs of searches in photons and jets
 - Supersymmetry, Leptoquarks, Compositeness, Extra Dimension, Signature-based
- World's best limits on numerous theory parameters
 - \succ LED M_s, M_D
 - ➤ TeV⁻¹ ED M_c
 - Mass of scalar Leptoquarks
 - GMSB neutralino mass and lifetime
 - Sbottom mass
- More data means more sensitive to new physics
 - > 0.7-2.9/fb today, ~ 5/fb collected
 - \geq 8.0/fb per exp. by the end of Run II
 - ➢ Run until 2009-2010 (proposed to run until 2012, 10-15/fb)

Backup Slides

Shin-Shan Yu

Tevatron Performance

- Both CDF and D0 have 5 fb⁻¹ of data on tape (6 fb⁻¹ delivered)
- Record initial luminosity: 3.6×10³² cm⁻²s⁻¹
- Results from 0.7-2.9 fb⁻¹ in this talk

Shin-Shan Yu

 Multi-purpose detector: tracking system, electromagnetic (ECAL) and hadron calorimeters (HCAL), and muon chamber

Shin-Shan Yu

Large Extra Dimensions in γ + MET

LED GRW and HLZ Models

$$[M_{Pl}]^{2} = 8\pi \times R^{n_{d}} [M_{D}]^{n_{d}+2}$$

$$\sigma_{NP} = f_{SM} + \left(\frac{F}{M_{S}^{4}}\right) f_{int} + \left(\frac{F}{M_{S}^{4}}\right)^{2} f_{NP}$$

$$F = 1 \text{ (GRW)}$$

$$F = \ln\left(\frac{M_{S}^{2}}{\hat{s}}\right) \text{ for } n_{d} = 2 \text{ (HLZ)}$$

$$F = \frac{2}{n_{d}-2} \text{ for } n_{d} > 2 \text{ (HLZ)}$$

$$M_{pl}^{2} = 8\pi M_{D}^{n+2} R^{n}$$

Shin-Shan Yu

LED Limits in the ee, $\gamma\gamma$ Channels

TABLE III: Observed and expected lower limits at the 95% C.L. on the effective Planck scale, M_s , in TeV.

	GRW	HLZ						
		n_d	2	3	4	5	6	7
Obs.	1.62		2.09	1.94	1.62	1.46	1.36	1.29
Exp.	1.66		2.16	2.01	1.66	1.49	1.38	1.31

LED and Compositeness Limits in jj

DØ preliminary 95% CL limits on New Physics models from the dijet angular distribution (in TeV)									
	χ^2 minimum		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		esian prior flat in η^2		$frequentist \ \chi^2 - \chi^2_{min} = 3.84$		previous limit
model (parameter)	position	depth	expected	found	expected	found	expected	found	
Quark Composit. (Λ)	5053 - 2626355	1013 0.0017	1040	11/3 200000	10.00	0 - 199000	10.40	11/3 - 68%)	100 Martine 200 Martine 20
$\lambda = +1$	5.10	0.02	$2.75 \begin{array}{c} +0.43 \\ -0.35 \end{array}$	2.58	$2.58 \substack{+0.28 \\ -0.29}$	2.39	2.65 + 0.42 - 0.35	2.46	2.73 [10]
$\lambda = -1$	5.22	0.02	$2.78 \substack{+0.36 \\ -0.41}$	2.54	$2.55 \substack{+0.31 \\ -0.33}$	2.35	$2.65 \stackrel{+0.45}{_{-0.39}}$	2.42	2.49 [10]
$\text{TeV}^{-1} \text{ ED } (M_C)$	2.17	0.66	$1.64 \stackrel{+0.23}{_{-0.25}}$	1.42	$1.51 \substack{+0.16 \\ -0.19}$	1.33	$1.57 \stackrel{+0.33}{-0.24}$	1.35	1.12 [27]
ADD LED (M_S)									
GRW	∞		$1.49 \stackrel{+0.12}{_{-0.14}}$	1.56	$1.44 \stackrel{+0.10}{_{-0.10}}$	1.48	$1.47 \stackrel{+0.16}{_{-0.14}}$	1.54	1.62 [26]
Hewett $\lambda = +1$	∞		$1.33 \stackrel{+0.11}{_{-0.12}}$	1.39	1.28 + 0.09	1.32	$1.31 + 0.14 \\ -0.12$	1.37	1.22 [25]
Hewett $\lambda = -1$	∞		$1.28 \stackrel{+0.11}{_{-0.09}}$	1.35	$1.23 \stackrel{+0.09}{-0.08}$	1.29	$1.25 + 0.13 \\ -0.09$	1.33	1.10 [25]
HLZ n=3	∞		$1.77 \stackrel{+0.14}{_{-0.16}}$	1.85	$1.71 \stackrel{+0.11}{-0.12}$	1.76	$1.74 \stackrel{+0.19}{-0.16}$	1.83	1.94 [26]
HLZ $n=4$	∞		$1.49 \stackrel{+0.12}{_{-0.14}}$	1.56	$1.44 \stackrel{+0.10}{-0.10}$	1.48	$1.47 \stackrel{+0.16}{_{-0.14}}$	1.54	1.62 [26]
HLZ $n=5$	∞		$1.35 \stackrel{+0.11}{_{-0.12}}$	1.41	$1.30 \stackrel{+0.09}{-0.09}$	1.34	$1.32 \stackrel{+0.14}{_{-0.12}}$	1.39	1.46 [26]
HLZ $n=6$	∞		$1.25 \ \substack{+0.11 \\ -0.10}$	1.31	$1.21 \stackrel{+0.08}{-0.08}$	1.25	$1.22 + 0.14 \\ -0.11$	1.29	1.36 [26]
HLZ $n=7$	∞		$1.19 \stackrel{+0.09}{_{-0.11}}$	1.24	$1.14 \stackrel{+0.08}{_{-0.08}}$	1.18	$1.17 \stackrel{+0.13}{_{-0.11}}$	1.22	1.29 [26]

Shin-Shan Yu

MET Significance

Shin-Shan Yu

GMSB in $\gamma\gamma$ + Missing E_T

Background Source	Expected Rate \pm Stat \pm Sys
Electroweak	$0.39{\pm}0.14{\pm}0.11$
QCD	$0.10{\pm}0.10{\pm}0.00$
Non-Collision	$0.049 {\pm} 0.042 {\pm} 0.028$
Tri-Photon	$0.00{\pm}0.180{\pm}0.035$
Wrong Vertex	$0.081 {\pm} 0.081 {\pm} 0.008$
Total	$0.62{\pm}0.26{\pm}0.12$

Shin-Shan Yu

New Physics in dijet + ME_{T}

Shin-Shan Yu

Sbottom from Gluino Decay

CDF Run II Preliminary 2.5 fb⁻¹

Two Inclusive Tags	QCD	Lepton	Preoptimization	
	Region	Region	Region	
W/Z + jets production	10 ± 7	19 ± 14	29 ± 22	
Diboson production	0.4 ± 0.1	2 ± 0.6	4 ± 1	
Top pair production	18 ± 6	107 ± 34	140 ± 45	
Single top production	1 ± 0.2	4 ± 1	6 ± 1	
HF QCD Multijets	864 ± 432	23 ± 11	273 ± 136	
Light-flavour contamination	238 ± 48	8 ± 2	57 ± 11	
Total expected	1132 ± 435	164 ± 38	510 ± 145	
Observed	1104	156	455	

CDF Run II Preliminary 2.5 fb⁻¹ (Two Inclusive Tags)

Region	Large Δm	Small Δm	
	Optimization	Optimization	
W/Z + jets production	0.1 ± 0.05	0.4 ± 0.3	
Diboson production	0.07 ± 0.02	0.1 ± 0.03	
Top pair production	1.9 ± 1.0	0.6 ± 0.4	
Single top production	0.03 ± 0.01	0.04 ± 0.01	
HF QCD Multijets	1.5 ± 0.7	0.6 ± 0.3	
Light-flavour contamination	0.9 ± 0.3	0.6 ± 0.1	
Total expected	4.5 ± 1.4	2.3 ± 0.8	
Observed	5	2	
Signal M(\tilde{g})=335, M(\tilde{b})=260	14.9 ± 5.0	<u></u>	
Signal M(\tilde{g})=335, M(\tilde{b})=315	-	8.5 ± 2.8	

- Predicted by several models
 - Pair production of scalar Leptoquarks
 - Little Higgs (T-parity conserved)
- Similar baseline requirements
 - > Exactly two jets, large ME_T , veto isolated tracks, leptons
- Major backgrounds
 - \blacktriangleright Z \rightarrow vv + jets
 - \succ W \rightarrow I ν +jets with missing lepton

Shin-Shan Yu

New Physics in dijet + ME_T

Cross-section limits for 1st- & 2nd-gen leptoquarks (95% CL)

- 1st and 2nd Leptoquarks
 - ➢ CDF M(LQ_{1,2}) > 179 GeV/c²
 - ➢ D0 M(LQ_{1,2}) > 205 GeV/c²
- T-odd quarks
 - Maximum T-quark mass excluded is 404 GeV/c²

Photons + Jets + X

2.0/fb

Photons + Jets + X

2.0/fb

