

TGC Limits and Search for New Resonances in WZ Production at CMS

Keti Kaadze

Kansas State University

On behalf of CMS collaboration

WZ production

Three diagrams describe WZ production at tree level:

- Important measurements with WZ
 - Cross section measurement
 - Important for Higgs and other searches
 - Measuring WWZ coupling
- Search for new physics
 - Limits on anomalous couplings
 - Increase of cross section
 - Enhanced p_T spectra
 - Search for a resonant production
 - Technicolor, W', fermiophobic charged

Generalized lagrangian is parameterized by 7 couplings. To be measured:

$$\Delta g^{Z}_{1} = g^{Z}_{1} - 1$$
; $\Delta \kappa_{Z} = \kappa_{Z} - 1$; λ_{Z}

Towards new physics

- Technicolor (TC) explaining EWSB
 - "walking" gauge coupling
 - Avoid FCNC interactions
 - Low-scale TC < 250 GeV
 - Mass of ρ_{TC} , ω_{TC} < 0.5 TeV

$$\begin{array}{l} \rho_{TC}/a_{TC} \to W^{\pm} + Z \to l^+ l^- l^{\pm} \nu - \text{cleanest} \\ \rho_{TC}/a_{TC} \to W^{\pm} + \pi_{TC} \to l^{\pm} \nu \, bq - \text{hard at LHC} \end{array}$$

- Predicts new gauge bosons W', Z'

Analysis strategy

$WZ \rightarrow$	jjjj	jjlv	jjll	lllv
Br frac. %	47.25	7.55	2.28	0.36

Fully leptonic channel is cleanest at LHC

- This analysis require 300-400 pb⁻¹ of integrated luminosity to claim a discovery (for √ŝ =14 TeV)
 - Earlier measurement of Z and W boson production is very useful
- Development of a well-controlled data-driven background estimation methods is crucial
- There are number of background processes to $WZ \rightarrow lll \ v : Z+jet$ (largest), $Z\gamma$, ZZ, W+jet, $t\overline{t+jet}$

We must have reliable and efficient lepton

ID to reduce background!

Event selection (eee, eeμ, eμμ, μμμ):

- Trigger based electrons or muons
- Three leptons satisfying lepton ID
 - Loose selection for *l* from *Z* decay
 - Tight selection for *l* from *W* decay
- Z mass constraint
- W transverse mass cut
- Event rejected if there is more than one
 Z boson candidates

m_T(W) (GeV)

ttbar+jets

m_T(W) (GeV)

Background estimation

Separate backgrounds

- Physics: ZZ, Zγ estimated from MC
- Instrumental without genuine Z boson: W+jet, $t\bar{t}+jet$ is relatively small(6% of signal sample) and is determined from MC. Can be estimated from side-bands with real data
- Instrumental with genuine Z boson: Z+jet, Z+bb using data-

driven matrix method

$$\begin{cases} N_{loose} = N_l + N_j \\ N_{tight} = \varepsilon_{tight} N_l + p_{fake} N_j \end{cases}$$

- Determine the efficiencies in data:
 Tag & Probe method (ε_{tight})
- Use W+jet sample to estimate p_{fake}

Signal extraction

 Estimated number of signal and background events are in perfect agreement with MC predictions

	3e	2e1μ	2μ1e	3μ
N - ZZ - $Z\gamma$ - W +jets - $t\bar{t}$	11.1 ± 1.3	8.2 ± 0.9	12.1 ± 1.2	10.5 ± 0.8
Ngenuine Z (matrix method)	3.2 ± 1.7	0.6 ± 0.8	4.6 ± 2.0	0.6 ± 0.9
N^{WZ^0}	7.9 ± 2.1	7.6 ± 1.2	7.5 ± 2.3	10.0 ± 1.2
WZ^0 from MC	7.9	8.1	9.0	10.1

- 5σ significance can be achieved with L < 350 pb⁻¹ all channels combined
 - •3 μ +MET signature is most sensitive due to low background level

Conclusion

- High energy range at LHC allows us to probe SM at energies never obtained before as well as increases sensitivity to new physics searches
- Di-boson physics studies are interesting and may provide an impact on our understanding of nature
- First measurements of WWZ coupling can be done with an early data. Any observation of anomalous couplings manifests new physics
- Stay tuned for the results from LHC ©

References

- CMS Collaboration, "Study of the Process *pp→WZ→lllv*, http://cms-physics.web.cern.ch/cms-physics/public/EWK-08-003-pas.pdf
- K. Lane, S. Mrenna, "The Collider Phenomenology of Technihadrons in the Technicolor Straw Man Model", Phys. Rev. D67, 115011 (2003) [hep-ph0210299]
- Alexander Belyaev et al., "Collider Phenomenology of Higgsless models", arXiv:0711.1919v