Precision test of the SIM with KI2 and KI3 decays at the KLOE experiment

T. Spadaro, LNF INFN for the KLOE collaboration

XLIV Renconstres de Moriond La Thuile, Italy, 11th March, 2009

KLOE measurements of $K \rightarrow \pi l \nu$, $l \nu$ decays can shed light on NP BSM

- **Precise determination of V**_{us} from BR's for $K \rightarrow \pi l\nu$, ff slopes, etc.: allows most precise test of unitarity of the CKM matrix translates into a severe constraint for many NP models
- Test of SM from $\Gamma(K_{\mu 2})/\Gamma(\pi_{\mu 2})$: probes NP RH contributions to charged weak currents probes H⁺ exchange in every SM extension with 2 Higgs doublets

LF violation test from $\Gamma(K_{e2})/\Gamma(K_{\mu 2})$: sensitive to NP effects, which might be at % level wrt SM prediction

CPT test from BR's and charge asymmetry in $K_{L,S} \rightarrow \pi l \nu$ decays: dramatically improve precision of CPT test via unitarity relation

In SM, universality of weak coupling dictates:

 $G_F^2 (|V_{ud}|^2 + |V_{us}|^2) = G^2(\text{from } \mu \text{ lifetime}) = (g_w/M_w)^2 [V_{ub} \text{ negligible}]$

One can test for possible breaking of one of the two conditions:

Interest in $V_{\mu s}$ measurement with kaons

CKM unitarity: is $(|V_{ud}|^2 + |V_{us}|^2) = 1$?

coupling universality: is $G_F^2 (|V_{ud}|^2 + |V_{us}|^2) = G^2$ (from μ lifetime)?

New physics extensions of the SM can indeed break coupling universality:

Kaon decay observables

Kl2 and Kl3 decay observables linked to the wanted short distance physics with independent theoretical uncertainty

For Kl3 decays, Ademollo-Gatto theorem dictates (3) terms appear at 2^{nd} order in $f_{K\pi}^+(0)$

 $K_{\mu 2}/\pi_{\mu 2}$: f_K/f_{π} uncertainty reduced from latest lattice results

Interest in V_{us} measurement with kaons

A measurement of $G_{CKM} = G_F(|V_{ud}|^2 + |V_{us}|^2)$ with error @ 0.5%

- is sensitive to tree masses $M_{_{\rm NP}}$ ~ 10 TeV and to loop masses $M_{_{\rm NP}}$ ~ 1 TeV
- is competitive with ew precision tests:

$$G_{\rm F} = 1.166371(6) \times 10^{-5} \, {\rm GeV^{-2}} \leftarrow$$

$$G_{\tau} = 1.1678(26) \times 10^{-5} \text{ GeV}^{-2} \leftarrow$$

$$\mathbf{G}_{\mathrm{ew}} = \mathbf{1.1655(12)} \times \mathbf{10^{-5} \ \mathrm{GeV^{-2}}} \leftarrow$$

$$\mathbf{G}_{\mathbf{CKM}} = \mathbf{1.16xx(04)} \times \mathbf{10^{-5} \ GeV^{-2}} \leftarrow$$

V_{us} from semileptonic kaon decays

Master formula:
$$\Gamma(K_{l3(\gamma)}) = |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \frac{G_F^2 m_K^5}{128\pi^3} S_{EW} C_K^2 I_{K\ell} (1 + \delta_K^\ell)$$

Theoretical inputs:

- $f_+(0)$, form factor at zero momentum transfer: purely theoretical calculation Recent result from UKQCD/RBC, 07 prel.: $f_+(0) = 0.964(5)$
- $\delta_{K}^{\ell} = 2(\Delta_{K}^{SU(2)} + \Delta_{K}^{\ell})$, I-breaking and e.m. effects: K0 K+ Recent χ Pt results: $\Delta_{K+}^{SU(2)} = +2.36(22)\%$, $\Delta_{K}^{\ell} = +0.57(15)\%$ +0.08(15)% $\ell = e$ -0.12(15)% $\ell = \mu$
- S_{EW} , short distance corrections (1.0232), $C_{K} = 1 (2^{-1/2})$ for $K^{0} (K^{+})$ decays

Experimental inputs:

- $I_{K}^{\ell} = I(\{\lambda_{+}\}, \{\lambda_{0}\}, 0)$, phase space integral, $\lambda_{+}, \lambda_{0} \rightarrow t$ -dependence of vector, scalar ffs
- $\Gamma_{Kl3(\gamma)}$, semileptonic decay width evaluated from γ -inclusive BR and lifetime
- m_k, appropriate kaon mass

KLOE measurements for all relevant inputs: BR's, τ 's, ff's

 V_{us}/V_{ud} from $K_{\mu 2}$ decays

Can also get $|V_{us}/V_{ud}|$ from K, $\pi \rightarrow \mu \nu$ widths [Marciano PRL93 231803,2004]:

$$\frac{\Gamma(K \to \mu\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = \frac{m_K \left(1 - \frac{m_\mu^2}{m_K^2}\right)^2}{m_\pi \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2} \left(\frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{1 + \frac{\alpha}{\pi}C_K}{1 + \frac{\alpha}{\pi}C_\pi}\right)$$

Theoretical inputs:

radiative correction C_K , C_{π} form factor ratio f_K/f_{π}

Experimental inputs:

$$m_{K,\pi,\mu}^{}\,,\Gamma(K_{\mu2}^{})/\Gamma(\pi_{\mu2}^{})$$

The DA Φ NE e^+e^- *collider*

Collisions at cm energy around m_{ϕ} : $\sqrt{s} \sim 1019.4$ MeV Angle between the beams @ IP: $\alpha \sim 12.5$ mrad Residual laboratory momentum of ϕ : $p_{\phi} \sim 13$ MeV Cross section for ϕ production @ peak: $\sigma_{\phi} \sim 3.1$ µb

Large cylindrical drift chamber + lead/scintillating-fiber calorimeter + superconducting coil providing a 0.52 T field

 $\begin{array}{ll} \sigma_{p}/p & 0.4 \% \ ({\rm tracks \ with \ }\theta > 45^{\circ}) \\ \sigma_{x} & 150 \ \mu m \ (xy), \ 2 \ mm \ (z) \\ \sigma_{x} & \sim 1 \ mm \end{array}$

 $\sigma_{E}/E \qquad 5.7\% / \sqrt{E(\text{GeV})}$ $\sigma_{t} \qquad 54 \text{ ps} / \sqrt{E(\text{GeV})} \oplus 50 \text{ ps}$ (relative time between clusters) $\sigma_{L}(\gamma\gamma) \qquad \sim 2 \text{ cm} (\pi^{0} \text{ from } K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0})$

Kaon physics at KLOE

- KK pairs emitted ~back to back, p ~ 110 MeV
- Identification of $K_{S,L}(K^{+,-})$ decay (interaction) tags presence of $K_{L,S}(K^{-,+})$
- Almost pure K_{L,S} and K^{+,-} beams of known momentum + PID (kinematics & TOF):
- Access to absolute BR's
- Precise measurements of K_{Le3} from factors and K_L , K^+ lifetimes (acceptance ~0.5 τ_L , τ_+)

Above points crucial for V_{us} determination

Data taking for KLOE experiment, years 2001-2005, now run completed

2001–5: ~2.5 fb⁻¹ integrated @ $\sqrt{s}=M(\phi)$, yielding ~2.5 × 10⁹ K_SK_L pairs Maximum peak luminosity, 2.5 10³² cm⁻² s⁻¹

Recent KLOE results in kaon physics

Focus on V_{us} determination, LFV violation, and CPT and χ Pt tests

KLOE results from kaon decays in last year:

Neutral Kaon mass Scalar form factor slope from $K_{L\mu3}$ Absolute BR for $K^+ \rightarrow \pi^+ \pi^0$ decay Absolute BR's for $K^{+,-} \rightarrow \pi l \nu$ $K^{+,-}$ lifetime Combined V_{us} determination CP, CPT parameters of K^0 system via BSR $d\Gamma(K_L \rightarrow \pi e \nu \gamma)/dE_{\gamma}$ $BR(K_S \rightarrow \gamma \gamma)$ JHEP 0712:073 JHEP 0712:105 PLB 666 (2008) JHEP 0802:098 JHEP 0801:073 JHEP 0804:059 JHEP 0612:011, review PDG'08 EPJC 55 (2008) JHEP 0805:051

Preliminary mmts have also been announced:

Updated form factor slopes from $K_{L\mu3}$ $UL[BR(K_S \rightarrow e^+e^-)]$ $\Gamma(K^+ \rightarrow e\nu)/\Gamma(K^+ \rightarrow \mu\nu)$ PoS KAON:016, 2008 ArXiv:0707.2687 (now final) ArXiv:0707.4623

Vus from Kl3 decays: results

Obtain: $|V_{ud}| = 0.97417(26), |V_{us}| = 0.2249(10), P(\chi^2 = 2.34/1) = 13\%$

CKM unitarity satisfied: $1 - |V_{ud}|^2 - |V_{us}|^2 = 4(7) \times 10^{-4}$

Weak coupling universality test

15

Agreement between weak couplings from K decays and from μ lifetime:

$$G_{\rm F}$$
 = 1.166371(6)×10⁻⁵ GeV⁻² \leftarrow

Agreement at this level of accuracy implies observation of short distance radiative corrections at ~40 σ level [Marciano]:

$$2 \alpha/\pi \log M_Z/M + ... \sim 2.5\%$$

Agreement of $f_+(0) \times V_{us}$ for K⁺ and K⁰, brilliant success of the calculation of isospin breaking and e.m. corrections at few per mils

Weak coupling universality test: BSM

Agreement between weak couplings from K and from μ constraints NP

In SO(10) Z_{χ} boson [Marciano]:

 $G_F = G_{CKM} [1 - 0.007 \times 8/3 \times \ln(M_Z/M_W)/(M_Z/M_W^2 - 1)]$

Implies: M_Z > 750 GeV @ 95% CL

In non-universal gauge interaction model, a tree level contribution from a Z' boson breaking unitarity might be present [K. Y. Lee PRD 76, 117702 2007]

Assume different couplings of $1^{st}-2^{nd}$ lepton generation (g_l) and $3^{rd}(g_h)$:

$$g_{l} = e/\sin\theta_{w} \cos\phi$$
$$g_{h} = e/\sin\theta_{w} \sin\phi$$
$$g' = e/\cos\theta_{w}$$

 θ_w is the weak mixing angle ϕ is the mixing angle between $SU(2)_l$ and $SU(2)_h$

Gauge structure appears in extended technicolor

Weak coupling universality test: MSSM

Scanning over MSSM parameter space, unitarity is sensitive to the squark-slepton mass difference [R. Barbieri 85, K. Hagiwara et al. 95, A Kurylov 00]

Weak coupling universality test: MSSM

Chance of improving? Lattice seems very solid:

Other tools are available to validate lattice results

Weak coupling universality test: MSSM

Dispersive parametrization of $f_0(t)$ from Kµ3 + K π scattering data relate value in the Callan-Treiman point to f_K/f_{π} [Stern et al., Pich et al.] The correction Δ_{CT} is evaluated in p-QCD

In two Higgs doublet models (MSSM, too), exchange of H⁺ provides an additional scalar current, which might contribute sizeably wrt to SM:

$$\frac{\Gamma(\mathbf{K} \to \ell \nu)}{\Gamma_{SM}(\mathbf{K} \to \ell \nu)} \cong \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$
[Hou PRD48 (1992) 2342, Isidori-Paradisi]

NP effect is suppressed for π_{l2} wrt K_{l2} , so NP might appear in $Kl2 / \pi l2$, predicted in the SM to be:

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left|\frac{V_{us}}{V_{ud}}\right|^2 \frac{f_K^2 m_K}{f_\pi^2 m_\pi} \left(\frac{1 - m_\ell^2 / m_K^2}{1 - m_\ell^2 / m_\pi^2}\right)^2 \times (1 + \delta_{\rm em})$$

NP test from comparing V_{us}/V_{ud} from $M \rightarrow l\nu$ with $V_{us}(K_{l3})/V_{ud}(0^+ \rightarrow 0^+)$:

$$\frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \bigg| \stackrel{?}{=} \bigg| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}$$

NP sensitivity from $K \rightarrow \mu \nu \sim as$ that from BR(B $\rightarrow \tau v$) = 1.73(35)×10⁻⁴

 $K_{\mu 2}$ – Sensitivity to NP

For Belle update see A. Bozek and E. Baracchini talks. For a combined fit in 2-Higgs doublet models, see M. Goebel talk in this conference

Error dominated by theoretical uncertainties in form factors

NP induced by weak right-handed currents can be also tested (there, complement lattice information with **Callan-Treiman scalar ff constraint**) [FlaviaNet arXiv:0801.1817]

Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74 (2006) 011701]

In R-parity MSSM, LFV can give 1% deviations from SM:

$$R_K^{LFV} \simeq R_K^{SM} \left[1 + \left(\frac{m_K^4}{M_H^4}\right) \left(\frac{m_\tau^2}{m_e^2}\right) |\Delta_R^{31}|^2 \, \tan^6 \beta \right]$$

NP dominated by contribution of ev_{τ} final state, with effective coupling $lH^{\pm}\nu_{\tau} \rightarrow \frac{g_2}{\sqrt{2}} \frac{m_{\tau}}{M_W} \Delta_{13}$, from loop Present exp. accuracy on $R_K @ 6\%$ New measurement of R_K can be very

interesting, if error is pushed @1% or better -

Entering the precision realm for R_{K}

24

Main actors (experiments) in the challenge to push down precision on R_K: **KLOE**

• preliminary result with 2001—5 data: $R_K = 2.55 (5)_{stat} (5)_{syst} 10^{-5}$, from ~ 8000 Ke2 candidates (3% accuracy)

NA48/2

- preliminary result with 2003 data: $R_K = 2.416 (43)_{stat} (24)_{syst} 10^{-5}$, from ~ 4000 Ke2 candidates, statistical error dominating (2% accuracy)
- preliminary result with 2004 data: $R_K = 2.455 (45)_{stat} (41)_{syst} 10^{-5}$, from ~ 4000 Ke2 candidates from special minimum bias run (3% accuracy)

NA62 (ex NA48), see talk by A. Winhart in this conference

collected ~ 150,000 Ke2 events in dedicated 2007 run, aims at breaking the 1% precision wall, possibly reaching < ~0.5%

Analysis of $K_{e2}/K_{\mu 2}$ – basic principles

KLOE integrated ~2.5 fb⁻¹ of data & BR(K_{e2})~10⁻⁵: expect < ~4×10⁴ events Perform direct search for K_{e2} and K_{µ2}, no tag: gain ×4 of statistics Select 1-prong kinks in DC, K track from IP & secondary P > 180 MeV Exploit tracking of K and secondary: assuming $m_v=0$ get M^2_{len}

R_{κ} analysis, kinematic selection

Rule of the game: reject K μ 2 by 10⁴, with Ke2 efficiency of O(50%)... Background composition: K μ 2 events with bad P_K, bad P₁ reconstruction Apply quality cuts for K and exploit $\Phi \rightarrow KK$ two-body kinematics

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Renconstres de Moriond, 11/03/2009

20

R_{κ} analysis, kinematic selection

In doing extrapolation for K, material budget φ_{DC} is a key issue: $\beta_{K} \sim 0.2$

For the Carbon-fiber DC inner wall, sensititivity on thickness difference Δ_{DC} wrt nominal value of 0.9 mm is order of 10 μ m

Get rid of bad-P₁'s using fit quality + asymmetry of DC hits in L & R views

R_{K} analysis, quality criteria

 $M_{lep}^{2} = f(P_{K}, P_{l}, \cos\theta) \rightarrow a$ -priori error δM_{lep}^{2} is scaled by opening angle Achieve cancellation in Ke2/Kµ2 efficiencies, applying $\cos\theta$ trailing cuts

Efficiency ~ 33% at this level

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Renconstres de Moriond, 11/03/2009

Analysis of R_{κ} , electron identification

Apply quality cuts, enough to count $K_{\mu 2}$, not for K_{e2} (still Bkg ~ 10×Sig) Further rejection for K_{e2} : extrapolate track to EmC, select closest cluster PID exploits EmC granularity: energy deposits E_k into 5 layers in depth

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Renconstres de Moriond, 11/03/2009

Analysis of R_{K} , electron identification

K_{Le3}

K_{Le3}

0.6

Use K_{Le3} to correct MC response at cell level and use MC to train NN

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Renconstres de Moriond, 11/03/2009

NN output

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Renconstres de Moriond, 11/03/2009

Vary significantly contamination + lever arm to assess fit systematics

Analysis of R_{K} – Radiative corrections

- Fit using IB+DE, count IB by considering as "signal" events those with $E_{\gamma}^* < 20$ MeV
- Correct for IB tail, $\varepsilon^{IB} = 95.28(5)$
- Repeat fit varying **DE** by its 15% uncertainty, get 0.45% error...

...too bad. Perform a dedicated analysis to measure DE:

- Explicitly detect radiated photon
- Compare DE/IB ratio with expectation from theory

Analysis of R_{K} – Radiative corrections

Pass from IB/DE ~ 9 to IB/DE ~ 0.6 by explicitly detecting radiated γ

Count 752(36) + 692(36) events Obtain: IB/(IB+DE) = 0.5153(96)

Agrees with expectation, IB_{SM}/(IB_{SM}+DE_{mmt}) = 0.509(38)
Allow systematics from DE to IB measurement to be pushed down at 0.1%

R_{K} at KLOE, efficiency evaluation

Reconstruction efficiency from MC, corrections from control samples Select $K^{+,-}_{\mu 2}$ and $K^{+,-}_{e3}$ in events tagged by identification of a $K^{-,+}_{\mu 2}$ decay Fit $P_{\mu}(P_{e})$ using $\mu(e)$ cluster r,t (& E), kinematics: no K, $\mu(e)$ trks required

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Renconstres de Moriond, 11/03/2009

Source	Systematic error [%]		Main mathad	
Source	Stat	Syst	Iviain method	
Reconstruction	0.4	0.4	Control samples	
Trigger efficiency	0.4		Downscaled events	
Bkg subtraction		0.3	Fit range variation	
Ke2(DE) component	0.1		Measurement on data	
Clustering for e, µ	0.3		KL control samples	
Total	0.6	0.5		

Further systematic check: use same algorithms to measure $R_3 = Ke3/K\mu3$

 $\begin{array}{l} R_3 = 1.507 \pm 0.005 \mbox{ for } K^+ \\ R_3 = 1.510 \pm 0.006 \mbox{ for } K^- \end{array} \mbox{ world avg } R_3 = 1.506 \pm 0.003 \mbox{ (FlaviaNet)} \end{array}$

 R_{κ} result

$R_{\rm K} = (2.493 \pm 0.025 \pm 0.019) \ 10^{-5}$

Stat error is 1.1% (0.85% from 14K Ke2 events ⊕ bkg subtraction) Syst error is dominated by statistics again (0.015) Measurement do not depend on K charge (good systematic check) K⁺: 2.496(37) vs K⁻: 2.490(38), (uncorrelated errors only)

Measurement agrees with SM prediction, $R_{K} = 2.477(1)$

R_{K} – Sensitivity to NP

Sensitivity shown as 95%-CL excluded regions in the tan β - M_H plane, for fixed values of the 1-3 slepton-mass matrix element, $\Delta_{13} = 10^{-3}, 0.5 \times 10^{-3}, 10^{-4}$

WA w new KLOE result: $R_{K} = 2.468(25) \times 10^{-5}$

- Recent KLOE mmts greatly improve knowledge of gauge coupling: Comprehensive set of observables for K decays: BR's, τ 's, FF's Improved unitarity test of 1st row of CKM matrix: $1-V_{ud}^2-V_{us}^2 = 4(7) \ 10^{-4}$ Sensitivity to NP contribution from test of universality of gauge coupling Lepton universality test from K₁₃ decays satisfied at < 0.5% New and interesting tests of NP effects from two-body decay studies Sensitivity to NP effects from K_{µ2}/ $\pi_{µ2}$: comparable to B $\rightarrow \tau \nu$
- Golden observable: R_K , final result $R_K = (2.493 \pm 0.025 \pm 0.019) \times 10^{-5}$

Future developments:

Focus on FF slopes from K_{I3}^{\pm} decays + BR($K_{S} \rightarrow \pi \mu \nu$), still missing

Status of Vud in 2008

1) G_v constant $7t = \frac{K}{2G_v^2 (1 + \Delta_R)}$

✓ verified to ± 0.013%

2) Scalar current zero \checkmark limit, $C_s/C_v = 0.0011$ (14)

3) Precise value determined for V_{ud} V_{ud} =

$$V_{ud} = G_{v/G_{\mu}}$$

Possible improvements in Vud

- Goal remains to tighten the window for new physics by reducing the uncertainty on V_{ud}.
- Uncertainty on calculated radiative correction Δ_R is the dominant contribution to the error budget.
- Nuclear-structure-dependent corrections, δ_c and δ_{NS} , can be tested by experiment; this has already led to improvements, but more are still possible.

Data on "well known" transitions can be made more precise, and new cases can be measured.

Beyond the quadratic ff parametrization

[Stern et al] Dispersion relation for ln $f_0(t)$ subtracted at t = 0 and $t = m_{\kappa^2} - m_{\pi^2}$, giving: $\tilde{f}_0(t) = \exp\left[\frac{t}{m_{L'}^2 - m_{\pi}^2} (\ln C - G(t))\right]$ G(t) evaluated using $K\pi$ scattering data 1 fit parameter: $\log C = 0.204 \pm 0.023$ JHEP0712:105 log C 1.25 Very precise relation between $f_{0}(0)^{*}$ $f_0(t)$ $f_{\rm k}/f_{\pi} + \Delta_{\rm CT}$ 1.2 and f_{κ}/f_{π} : 1.15 1.1 $f_0(\Delta_{\kappa\pi}) = f_{\kappa}/f_{\pi} + \Delta_{CT}$ 1.05 $f_{+}(0) f_{0}(\Delta_{\kappa_{\pi}}) = f_{\kappa}/f_{\pi} + \Delta_{CT}$ $f_{(0)}$ 1 $\Delta_{\kappa\pi}$ K_{u3} 0.95 $\Delta_{\kappa\pi} = m_{\kappa}^2 - m_{\pi}^2$; $\Delta_{c\tau} = 3.5 \times 10^{-3}$ SU(2) 0.9 10 0 8 t/m_{-}^2

In SM, electron and muon differs only by mass and coupling to Higgs

New physics extensions of the SM with LFV not ruled out, so:

- Can search for processes forbidden/ultra-rare in SM, e.g. $K{\rightarrow}~\mu e$
- Can measure ratio of coupling constants, seeking deviations from 1 in processes well known in SM, like:

 $\mathbf{R}_{e\mu} = \Gamma(\mathbf{K}_{e3})/\Gamma(\mathbf{K}_{\mu3}) \rightarrow \mathbf{G}_{F}^{\ e}/\mathbf{G}_{F}^{\ \mu}$

Testing H⁺ effects or right-handed currents in:

 $\mathbf{R}_{\mathrm{K}\pi} = \Gamma(\mathrm{K} \to \mu \nu) / \Gamma(\pi \to \mu \nu)$

Testing LFV violation NP amplitudes contributing to:

 $R_{K} = \Gamma(K \rightarrow e\nu)/\Gamma(K \rightarrow \mu\nu)$

45

For each kaon charge state of K₁₃ decays can evaluate:

$$\frac{(R_{\mu e})_{\text{obs}}}{(R_{\mu e})_{\text{SM}}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e 3}} \cdot \frac{I_{e 3} \left(1 + \delta_{e 3}\right)}{I_{\mu 3} \left(1 + \delta_{\mu 3}\right)} = \frac{\left[|V_{us}| f_{+}(0)\right]_{\mu 3, \text{ obs}}^{2}}{\left[|V_{us}| f_{+}(0)\right]_{e 3, \text{ obs}}^{2}} = \frac{g_{\mu}^{2}}{g_{e}^{2}}$$

e/μ universality satisfied, using only KLOE results get accuracy < 0.01:

K_L $g_{\mu}^2/g_e^2 = 1.011(9)$ cfr with $g_{\mu}^2/g_e^2 = 1.0232(68)$ [PDG04]K^+ $g_{\mu}^2/g_e^2 = 0.99(1)$ cfr with $g_{\mu}^2/g_e^2 = 1.0020(80)$ [PDG04]Avg $g_{\mu}^2/g_e^2 = 1.000(8)$

Compare with

 $\tau \rightarrow l\nu\nu \qquad g_{\mu}^{2}/g_{e}^{2} = 1.000(4) \text{ [Davier, Höcker, Zhang '06]} \\ \pi \rightarrow l\nu \qquad g_{\mu}^{2}/g_{e}^{2} = 1.004(3) \text{ [Erler, Ramsey-Musolf '06]}$

Experimental inputs are known at few per-mil level:

$m_{K,\pi,\mu}^{},\Gamma(\pi_{\mu 2}^{})$	[PDG]
$\tau^+ = 12.347(30)$	[KLOE]
$BR(K^+ \rightarrow \mu^+ \nu(\gamma)) = 63.66(17)\%$	[KLOE]
$ \mathbf{f}_{+}(0)\mathbf{V}_{us} = 0.2157(6)$	[KLOE]
$V_{ud} = 0.97418(26)$	[world average $0^+ \rightarrow 0^+$]

Theoretical inputs dominate the uncertainty, through the form factors:

$f_{\rm K}^{\rm }/f_{\pi}^{\rm }=1.189(7)$	[MILC-HPQCD arXiv:0706.1726]
$f_+(0) = 0.964(5)$	[UKQCD-RBC hep-lat/0702026]
$\delta_{em} = -0.0070(35)$	[Marciano PRL 93 (2004) 231803,
	Cirigliano Rosell JHEP 0710, 005 (2007)]

R_{K} analysis, quality criteria

 $M_{lep}^{2} = f(P_{K}, P_{l}, \cos\theta) \rightarrow a$ -priori error δM_{lep}^{2} is scaled by opening angle Achieve cancellation in Ke2/Kµ2 efficiencies, applying $\cos\theta$ trailing cuts

Two-dimensional binned likelihood fit in the NN- M²_{lep} plane

Two-dimensional binned likelihood fit in the NN- M²_{lep} plane

R_K analysis, counting Km2 events

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Le renconstres de Moriond, 11/03/2009 50

R_{K} at KLOE, control samples

Check NN output using K^{\pm}_{e3} , $K^{\pm}_{\mu3}$ (can check TOF, not possible with K_L) Require π^0 detection **NN** output 1.4 Cut against $\pi\pi^0$ bkg Log z scale 1.2 Use $\pi^0 \gamma$'s to evaluate E_{miss} , P_{miss} MC K+_{e3} 1 0.8 0.6 0.4

$$\frac{0}{100} + \frac{100}{100} + \frac{100}{125} + \frac{100}{100} + \frac$$

R_{K} at KLOE, control samples

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Renconstres de Moriond, 11/03/2009

R_{K} – experimental status as of yesterday

Recent (preliminary) results improved greatly with respect to 2006 PDG

World average, $R_{K} = 2.457(32) \times 10^{-5}$, agrees with SM

Precision SM test with Kl2 & Kl3 at KLOE – T. Spadaro – Renconstres de Moriond, 11/03/2009

Both linear and quadratic fits show good χ^2 probabilities, 89% and 92%

Linear fit	$\lambda_+ imes 10^3$	χ^2/ndf
$K_L \to \pi^- e^+ \nu$	28.7 ± 0.7	156/181
$K_L \to \pi^+ e^- \overline{\nu}$	28.5 ± 0.6	174/181
Combined	28.6 ± 0.5	330/363

Quadratic fit	$\lambda'_+ imes 10^3$	$\lambda_+''\times 10^3$	$\chi^2/{ m ndf}$
$K_L \to \pi^- e^+ \nu$	24.6 ± 2.1	1.9 ± 1.0	152/180
$K_L \to \pi^+ e^- \overline{\nu}$	26.4 ± 2.1	1.0 ± 1.0	173/180
Combined	25.5 ± 1.5	1.4 ± 0.7	325/362

$$\lambda_{+} = (28.6 \pm 0.5_{\text{stat.}} \pm 0.4_{\text{syst.}}) \times 10^{-3}$$

$$\begin{split} \lambda'_{+} &= (25.5 \pm 1.5_{\text{stat.}} \pm 1.0_{\text{syst.}}) \times 10^{-3} \\ \lambda''_{+} &= (1.4 \pm 0.7_{\text{stat.}} \pm 0.4_{\text{syst.}}) \times 10^{-3} \\ \rho(\lambda', \lambda'') \sim -0.95 \end{split}$$

Pole fit result (92% χ^2 probability) indicates dominance of K*(892)-exchange in the K π transition: $M_V = (870 \pm 6_{\text{stat.}} \pm 7_{\text{syst.}}) \text{ MeV}$

Systematic errors dominated by uncertainties in TOF efficiency correction

Measurement of K_{Le3} form factor slopes

- KLOE measurements of K_{Le3} and $K_{l\mu3}$ BR and ff slopes determine:
- $\mathbf{f}_{+}(0) \times |\mathbf{V}_{us}| = 0.21561(69)$
- $\mathbf{f}_{+}(0) \times |\mathbf{V}_{us}| = 0.21633(78)$
- Inputs only from KLOE, errors of 0.32% and 0.40%
- In comparing with results from other experiments, have to take correlations into account, especially for ff's

Other impacts from $K_{se3}(1)$

Comparing $\Gamma(K_S \rightarrow \pi e \nu)$ to $\Gamma(K_L \rightarrow \pi e \nu)$, test $\Delta S = \Delta Q$:

×2 improvement in precision on $\operatorname{Re} x_{+} = (-0.5 \pm 3.6) \times 10^{-3}$

Sensitivity to CPT violating effects through charge asymmetry:

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ \nu) - \Gamma(K_{S,L} \to \pi^+ e^- \overline{\nu})}{\Gamma(K_{S,L} \to \pi^- e^+ \nu) + \Gamma(K_{S,L} \to \pi^+ e^- \overline{\nu})} \begin{cases} A_S - A_L = 4 \left[\text{Re} \left(\delta \right) + \text{Re} \left(x_{\perp} \right) \right] \\ A_S + A_L = 4 \left[\text{Re} \left(\epsilon \right) - \text{Re} \left(y \right) \right] \end{cases}$$

Evaluate A_S from: $A_S = \frac{N(\pi^- e^+ \nu)/\epsilon_{\text{tot}}^+ - N(\pi^+ e^- \overline{\nu})/\epsilon_{\text{tot}}^-}{N(\pi^- e^+ \nu)/\epsilon_{\text{tot}}^+ + N(\pi^+ e^- \overline{\nu})/\epsilon_{\text{tot}}^-}$

A_s measured for the first time: $A_S = (1.5 \pm 9.6_{\text{stat}} \pm 2.9_{\text{syst}}) \times 10^{-3}$

Error dominated by statistics, ×3 improvement after analysis of 2.5 fb⁻¹

Impact of new data on K0 decays: BSR

With KLOE data improved **CPT** test via Bell-Steinberger (unitarity) relation: $(\Gamma_{\delta} + \Gamma_{L}) = 1 - \sum_{i=1}^{N} (-i\Im \delta) = 1 - \sum_{i=1}^{N} (-i\bigcap \delta)$

$$\left(\frac{\Gamma_{S}+\Gamma_{L}}{\Gamma_{S}-\Gamma_{L}}+i\tan\phi_{SW}\right)\left(\frac{\Re(\epsilon-i\Im(\sigma))}{1+\epsilon^{2}}\right)=\frac{1}{\Gamma_{S}-\Gamma_{L}}\Sigma_{f}A_{L}(f)A_{S}^{**}(f)$$

After CPLEAR measurements (2001) After KLOE measurements (2006)

 $Re(\epsilon) = (164.9 \pm 2.5) \times 10^{-5}$ $Im(\delta) = (2.4 \pm 5.0) \times 10^{-5}$

 $\begin{aligned} \text{Re}(\epsilon) &= (159.6 \pm 1.3) \times 10^{-5} \\ \text{Im}(\delta) &= (\ 0.4 \pm 2.1) \times 10^{-5} \end{aligned}$

Impact of new data on K0 decays: UT

From BSR, shift central value of $\Re\epsilon$ by 3.6 σ with respect to PDG04

|ε| is related to the η and ρ parameters of the CKM matrix: $|ε| = C_1 B_K V_{ch}^2 \eta [C_2 + C_3 V_{ch}^2 (1-ρ)]$

Tagging starts from one-prong decay reconstruction in drift chamber Cut on p_{π}^* to identify two-body decays, $K \to \pi \pi^0$ and $K \to \mu \nu$

4 independent taggings: $K^{\pm}\pi 2 \& K^{\pm}\mu 2$:

- Can measure absolute BR's for each tag sample separately: keep tag-bias effects under control
- Compare results by charge: keep systematics from K⁻ nuclear interactions in traversed material under control

Measurements of K^{+,-} semileptonic BR's

- Detect photons from π^0
- Kinematical cuts to reject non-Kl3 decays: not-Kl3 background ~1.5%
- Signal counts: log-*L* fit of distribution of lepton mass squared (M²) from TOF

Result:

$$BR(K_{e3}^{\pm}) = 4.965(19)_{stat}(33)_{corr-stat}(37)_{syst}\%$$

$$BR(K_{\mu3}^{\pm}) = 3.233(16)_{stat}(24)_{corr-stat}(26)_{syst}\%$$

$$\rho(K_{e3},K_{\mu3}) = 0.63$$

Above mmt @ $\tau^+=12.384$ ns, for V_{us} use dependency dBR/BR = -0.45d τ/τ Systematics dominated by uncertainty on tracking efficiency correction

Measurements of K^{+,-} lifetime

Experimental status unclear:

PDG average $\delta \tau / \tau \sim 0.2\% \rightarrow \delta V_{us} / V_{us} \sim 0.1\%$

Mmts spread $\delta \tau / \tau \sim 0.8\% \rightarrow \delta V_{us} / V_{us} \sim 0.4\%$

Two methods to measure τ_{\pm} at KLOE:

1) From $\mathbf{K}^+ \rightarrow \mathbf{X}\pi^0$, proper time t* from γ TOF's \checkmark

2) From $\mathbf{K}^+ \rightarrow 1$ track decay-length, $t^* = \sum_i L_i / (\beta_i \gamma_i c)$

Allow systematic checks, only features in common to both methods are:

Tag is done with $K_{\mu 2}$ decay identification

Kaon decay vertex is in the DC

4 results are compatible, thus can average:

 $\tau_{\pm} = 12.347(30) \text{ ns}$ $\tau(\text{K}^+)/\tau(\text{K}^-) = 1.004(4)$

Unique to KLOE: K_{Su3} decays

Decay mode has never been observed

Generators for radiative K decays

Generators for kaon decays include radiation, no cutoff energy

- Full O(α) amplitudes (real and virtual contributions) summed to all orders in α by exponentiation (soft-photon approximation)
- Carefully checked against all available data and calculations, e.g:

$BR(K_L \to \pi e v)$	$\mu\gamma, E_{\gamma} > 30 MeV \theta_{e\gamma} >$	20°) _	10 2
В	$R(K_L \to \pi e \nu)$		
kTeV	$(0.908 \pm 0.015) \times 10^{-2}$	2	10
Bijnens et al	0.93×10^{-2}		
МС	0.93×10^{-2}		ŭ 20
$BR(K_s \to \pi)$	$\pi\gamma, E_{\gamma} > 50 MeV)$	E731	(2.56±0.09)×10-3
BR(I	$(K_s \to \pi \pi)$	МС	2.6×10 ⁻³

[C. Gatti, EPJC 45 (2006)]