

First Evidence of WW/WZ→lvqq at the Tevatron

- Motivation
- Selection
- Multivariate Classification
- Cross Section Measurement
- Significance

Joseph Haley (D0 Collaboration)

Young Scientists Forum Rencontres de Moriond – EW March 2009

Motivation

- Probe of the Electroweak sector of the SM at the Tevatron
 - Sensitive to anomalous trilinear gauge-boson couplings
 - Complimentary to measurements in the fully leptonic channels

- Background to Higgs searches
- Benchmark for low mass Higgs ($m_H < 135 \text{ GeV/c}^2$)
 - Very similar to WH→lvbb
 - Same challenge of large W+jets background
 - Similar Multivariate classifiers, statistical treatment
 - \Rightarrow Proving ground for these analysis techniques

Selection

Multivariate Classification

- Improve signal and background separation w/ a multivariate classifier
 - Found <u>Random Forest</u> (RF) classifier to be the most powerful and robust
- From outside (black box), RF is like other classifiers (e.g. NN)
 - Trained with signal and background MC
 - Use trained Random Forest to evaluate new events → determine the likelihood of being signal

-signal

Multivariate Classification

- Improve signal and background separation w/ a multivariate classifier
 - Found <u>Random Forest</u> (RF) classifier to be the most powerful and robust
- From outside (black box), RF is like other classifiers (e.g. NN)
 - Trained with signal and background MC
 - Use trained Random Forest to evaluate new events → determine the likelihood of being signal

Random Forest

• Inside the RF

- Many different tree classifiers
 - Each tree classifier performs a series of optimized cuts to separate signal from background
- The RF output averages the output from all the trees
 - Fluctuations and over-training are reduced because each tree will fluctuate differently

A "forest" of many decision tree classifiers

split

Measuring WW+WZ cross section

- Perform "best-fit" of the signal and backgrounds to data using the RF distribution
 - Minimize Poisson χ^2 between data and MC
 - Allow signal and background distributions to fluctuate within uncertainties
 - Signal cross section is a free parameter determined by fit
 - Also allow fit to determine W+jets normalization

	Channel	Measured Signal Cross Section [pb]
↑	$e u q \overline{q}$ $\mu u q \overline{q}$ Combined	$18.0 \pm 3.7(\text{stat}) \pm 5.2(\text{sys}) \pm 1.1(\text{lum}) \\22.8 \pm 3.3(\text{stat}) \pm 4.9(\text{sys}) \pm 1.4(\text{lum}) \\20.2 \pm 2.5(\text{stat}) \pm 3.6(\text{sys}) \pm 1.2(\text{lum})$

• SM prediction: $\sigma(WW+WZ) = 16.1 \pm 0.9 \text{ pb}$

Measuring WW+WZ cross section

- Perform "best-fit" of the signal and backgrounds to data using the RF distribution
 - Minimize Poisson χ^2 between data and MC
 - Allow signal and background distributions to fluctuate within uncertainties
 - Signal cross section is a free parameter determined by fit
 - Also allow fit to determine W+jets normalization

	Channel	Measured Signal Cross Section [pb]
↑	e u q ar q $\mu u q ar q$ Combined	$18.0 \pm 3.7(\text{stat}) \pm 5.2(\text{sys}) \pm 1.1(\text{lum}) \\22.8 \pm 3.3(\text{stat}) \pm 4.9(\text{sys}) \pm 1.4(\text{lum}) \\20.2 \pm 2.5(\text{stat}) \pm 3.6(\text{sys}) \pm 1.2(\text{lum})$

• SM prediction: $\sigma(WW+WZ) = 16.1 \pm 0.9 \text{ pb}$

• Measured using the Dijet Mass: $\sigma(WW+WZ) = 18.5 \pm 2.8(\text{stat}) \pm 4.9(\text{sys}) \pm 1.1(\text{lum}) \text{ pb}$

Significance

• Estimation of significance

- Frequentist approach: count fraction of times the background-only scenario would mimic a signal cross section as large as we measured (or expect)
 - Generate pseudo-data for background-only scenario
 - randomly sample the systematics from their priors, then drawing Poisson trials for each bin
 - Fit the background-only pseudo-data outcomes in the same was as real data
- \Rightarrow Expected significance: 3.6 σ (p-value = 1.5 \cdot 10⁻⁴)
- \Rightarrow Observed significance: 4.4 σ (p-value = 5.4 \cdot 10⁻⁶)

Significance

• Estimation of significance

- Frequentist approach: count fraction of times the background-only scenario would mimic a signal cross section as large as we measured (or expect)
 - Generate pseudo-data for background-only scenario
 - randomly sample the systematics from their priors, then drawing Poisson trials for each bin
 - Fit the background-only pseudo-data outcomes in the same was as real data
- \Rightarrow Expected significance: 3.6 σ (p-value = 1.5 \cdot 10⁻⁴)
- \Rightarrow Observed significance: 4.4 σ (p-value = 5.4 \cdot 10⁻⁶)
- Compatibility with the SM
 - Same approach, but with pseudo-data for signal+background scenario
 - \Rightarrow 0.83 σ above SM prediction

Princeton University

Summary

- First Evidence of $WW/WZ \rightarrow lvq\bar{q}$ at a hadron collider
- Benchmark for similar Higgs analyses
- Results:
 - σ(*WW*+*WZ*) = 20.2 ± 4.9 pb
 - Observed significance of 4.4σ
 - + Consistent with the SM prediction at 0.83σ

Background subtracted dijet mass distributions after best-fit of RF

thank you

arXiv:0810.3873 [hep-ex], FERMILAB-PUB-08-457-E, Submitted to PRL 2008/10/21

backup slides

Decision Tree Classifier

MC Corrections

- Selected sample is dominated by W+jets background
 - W+jets is ~30 times larger than the signal!
 - Need to accurately model *W*+jets at the percent level

- Potential problems with modeling of W+jets
 - Angles
 - Jet η and ΔR between jets is not modeled well by Alpgen
 - To correct these differences we re-weight the MC to agree with data
 - Energies
 - Alpgen does a fairly good job of modeling energies, however, energy distributions can be affected by Alpgen generator and matching parameters
 - Studied the effects of these parameters to
 - > Determine the uncertainty from these parameters
 - > Determine best values for agreement with data
 - Cross section
 - The W+jets cross section is floated when measuring diboson cross section

