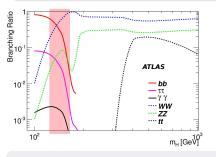
Search for the Standard Model $H \to \gamma \gamma$ decays with the ATLAS detector at the LHC


Jean-François MARCHAND on behalf of the ATLAS Collaboration

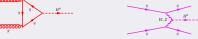
Laboratoire d'Annecy-le-Vieux de Physique des Particules

XLIV Rencontres de MORIOND - EW Session 11/03/2009

Introduction

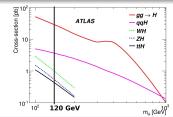
- $H \to \gamma \gamma$ is one of the most promising discovery channels for a SM Higgs boson in low mass region (114 $< m_{
 m H} < 150 {
 m GeV}$)
- Has shaped the requirements for the EM calorimetry (together with $H \rightarrow 4e$ channel)

• Small branching ratio $(\approx 2 \cdot 10^{-3} \text{ for } m_H = 120 \text{ GeV})$

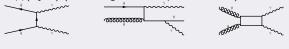

BUT

- Simple signature
- Very good mass resolution $(\approx 1.5 \text{GeV})$
- → Need good photon reconstruction/identification
- \rightarrow Need good γ /jet rejection
- → Need proper conversion handling
- → Need good photons direction measurement

Signal and background

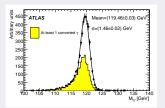

Higgs boson production

- gg fusion
- Vector Boson Fusion (VBF)
- Associated production with W, Z or tt̄



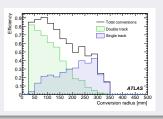
Signal

Background

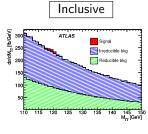

• Irreducible : $\gamma\gamma$ (+jets) (Born, fragmentation processes, box)

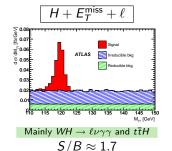
Reducible : γ/jet(s), jet(s)/jet(s)

Reconstruction issues

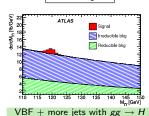

Conversion reconstruction

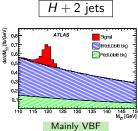
- MC studies : 57% of $H \rightarrow \gamma \gamma$ events have ≥ 1 conversion ($R_{\text{conv}} < 800 \text{mm}$)
- 2 types of converted photons are used :

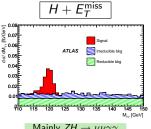

- Double track conversions
- Single track conversions
- Reconstruction efficiency $\approx 70\%$ for early conversions ($R_{\text{conv}} < 350 \, mm$)


Pointing - Primary Vertex

- Precise measurement of the primary vertex position is very important to improve the Higgs mass resolution
 - → Pointing using multi-layer structure of EM calorimeter, conversion tracks, recoil tracks

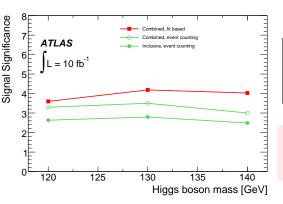

Different analysis


$$S/B \approx 0.02$$


H+1 jet

 $S/B \approx 0.08$

 $S/B \approx 0.5$



- Mainly $ZH \rightarrow \nu \nu \gamma \gamma$
 - $S/B \approx 2.0$

- Different topologydifferent S/B
- Larger S/B but lower x-sections

Discovery potential

- Expected signal significance for 10 fb⁻¹ of integrated luminosity
- Comparing Event counting and Combined fit :
 - Using $m_{\gamma\gamma}$, $p_{T\text{Higgs}}$, $|cos\theta^*|$ (θ^* is the photon decay angle in the Higgs rest frame wrt Higgs lab flight direction)
 - ullet And several categories : η , event topology (H + 0, 1, 2 jets) and conversions

m_H	Event of	counting	Combined fit
(GeV)	Inclusive	combined	Combined iii
120	2.6	3.3	3.6
130	2.8	3.5	4.2
140	2.5	3.0	4.0

 \Rightarrow Combined fit increases the significance by \approx 40% with respect to inclusive analysis

Conclusion

- 3σ observation should be possible with integrated luminosity less than 10 fb^{-1}
- Many improvements since previous studies... and many areas are still going to be improved (conversions...)
- And of course : work will be needed to understand the detector performance with first data...

More details in : Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics http://arxiv.org/abs/0901.0512

JF Marchand (LAPP) Moriond EW - 11/03/2009 7

BACKUP

Inclusive analysis

- $0<|\eta|<1.37,\ 1.52<|\eta|<2.37$ (motivated by offline photon identification and fake rate) \Rightarrow Also applied in H+1jet and H+2jets analysis
- \bullet $p_T^{\gamma_1} > 40 \text{GeV}$, $p_T^{\gamma_2} > 25 \text{GeV}$ (obtained from optimization studies)

H+1 jet analysis

- $p_T^{\gamma_1} > 45 \text{GeV}, p_T^{\gamma_2} > 25 \text{GeV}$
- ullet \geq 1 hadronic jet with $ho_T^{
 m jet}$ > 20GeV in $|\eta|$ < 5 (motivated by the ability to calibrate hadronic jets in ATLAS)
- $m_{\gamma\gamma \text{jet}} > 350 \text{GeV}$

H+2 jets analysis

- $p_T^{\gamma_1} > 50 \text{GeV}$, $p_T^{\gamma_2} > 25 \text{GeV}$
- ullet \geq 2 hadronic jets with ${p_T}^{
 m jet_1} >$ 40GeV, ${p_T}^{
 m jet_2} >$ 20GeV in $|\eta| <$ 5
- Jets in opposite direction : $\eta_1\eta_2<0$ (VBF process at LO produces 2 high p_T and relatively forward jets in opposite hemisphere)
- $\Delta \eta_{ij} > 3.6$ Pseudorapidity gap and invariant mass of signal jets tend to be significantly
- $m_{ii} > 500 \text{GeV}$ | larger than those expected for background processes
- Photons in between tagging jets
- Central jet veto : $p_T > 20 \text{GeV}$, $|\eta| < 3.2$

Expected cross sections

Expected cross sections:

—: F							
	Inclusive	H+1jet	H+2jets	$H+E_T^{miss}+1$ lepton	$H+E_T^{miss}$		
$\sigma_{\sf sig}$	25.4 fb	4.0 fb	0.97 fb	0.126 fb	0.072 fb		
$\sigma_{\sf bkg}$	947 fb	49 fb	1.95 fb	0.075 fb	0.036 fb		

in a mass window of $m_{\gamma\gamma} \pm 1.4\sigma$ for inclusive, H+1 and H+2 jets

in a mass window of $m_{\gamma\gamma}=120\pm2(1.8) \text{GeV}$ for $\text{H}+E_{T}^{\text{miss}}+1$ lepton (for $\text{H}+E_{T}^{\text{miss}}$)

Trigger

 \bullet L1 menu : 2EM13I \rightarrow \geq 2 isolated electron or photon candidates with $E_T=13 \mbox{GeV}$

• L2 and EF: 2g17i - Refine the analysis of L1

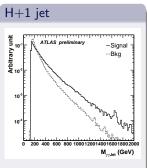
Efficiency for the 2g17i menu item to trigger on $H\to\gamma\gamma$ events with $m_H=120{\rm GeV}$ -Normalized with respect to the offline selection

Trigger Level	2g17i Trigger efficiency			
L1	96±0.3			
L2 Calo	95±0.4			
EF Calo	94±0.4			

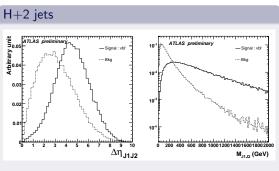
- Efficiency loss mainly due to the calorimeter isolation at L1 which is not applied in the offline photon selection
- 2g17i should be usable upt to luminosities of 10^{33} cm⁻²s⁻¹

MC event generation

Signal


- Events generated using PYTHIA : LO matrix element calculation for all processes
- MC@NLO also used to simulate gluon fusion process
- HERWIG also used to model VBF process
- ⇒ Full detector simulation used

All generated samples used for signal are normalized to the NLO cross-sections taking into account only QCD corrections

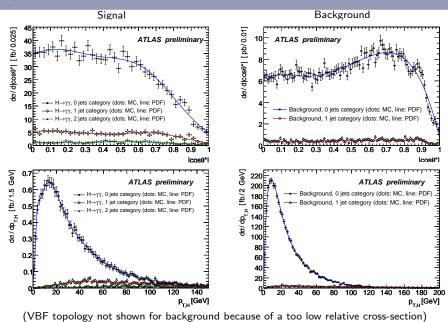

Background

	Process	σ calculator	Cuts	σ (pb)	Full simulation # of events	Fast simulation # of events
	$qar{q},qg ightarrow \gamma\gamma x$	ReBos/ DIPHOX	$80 < m_{\gamma\gamma} < 150 ext{GeV}$ $ ho_{T\gamma} > 25 ext{GeV}, \eta < 2.5$	20.9	PYTHIA/ALPGEN 200000/1300000	ALPGEN 1670000
	$gg o \gamma \gamma$	ReBos	$p_{T\gamma} > 25 \text{GeV}, \eta < 2.5$	8.0	PYTHIA 200000	PYTHIA 850000
П	γj	JETPHOX	$p_{T,\gamma} > 25 \text{GeV}$	180 · 10 ³	PYTHIA	ALPGEN
H			,		3000000	36700000
П	jj	NLOJET++	$p_{T_{\gamma}} > 25 \text{GeV}$	477 · 10 ⁶	PYTHIA	ALPGEN
Ш			,		10000000	37000000

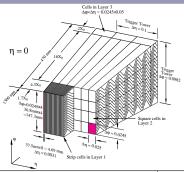
Discriminating variables for H+1, 2 jets analysis

• $m_{\gamma\gamma i} > 350 \text{GeV}$

- $\Delta \eta_{ii} > 3.6$
- $m_{ii} > 500 \text{GeV}$

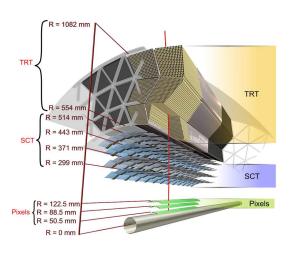

Fit – Fitter used

Hfitter Performs unbinned extended maximum likelihood fits, arbitrary number of samples, categories and fit variables (based on RooFit)


Likelihood :
$$\boxed{L = \prod_{c=1}^{n_{\mathrm{cat}}} e^{-\overline{N}^c} \prod_{i=1}^{N^c} P_i^c}$$

with
$$P_i^{\mathcal{C}} = N_H f_H^{\mathcal{C}} P_{H,i}^{\mathcal{C}} + \sum_{j=1}^{H_{\mathrm{bkg}}} N_{B_j}^{\mathcal{C}} P_{B_j,i}^{\mathcal{C}}$$
 and $P_{U_j,i}^{\mathcal{C}} = \prod_{k=1}^{h_{\mathrm{var}}} p_U^{\mathcal{C}}(x_{k,i})$ where $U = H, B_j$
$$\begin{cases} N_H : \text{total number of } H \to \gamma \gamma \text{ events in sample sample} \\ c : \text{category with distinct properties } (\eta, p_T \text{ region, production mechanism...}) \\ f_H^{\mathcal{C}} : \text{fraction of signal events in category } c \\ N_{B_j}^{\mathcal{C}} : \text{number of background event of type } j \text{ in category } c \\ n_{\mathrm{bkg}} : \text{number of background types } \gamma/\text{jet}, 2\gamma+\text{jet, di-jet, ...} \\ p_U^{\mathcal{C}}(x_{k,j}) : \text{probability density for event } i \text{ in category } c \text{ of type } U \\ \text{for dscriminant variable } x_k \end{cases}$$

Fit


Calorimeter granularity

	_				
	$ \eta $ range	Cell η size		Cell ϕ size	
		Layer 1	Layer 2	Layer 1	Layer 2
Barrel	0-1.4	0.025/8	0.025	0.1	0.025
	1.4-1.475	0.025	0.075	0.1	0.025
EndCap	1.375-1.425	0.05	0.05	0.1	0.025
	1.425-1.5	0.025	0.025	0.1	0.025
	1.5-1.8	0.025/8	0.025	0.1	0.025
	1.8-2.0	0.025/6	0.025	0.1	0.025
	2.0-2.4	0.025/4	0.025	0.1	0.025
	2.4-2.5	0.025	0.025	0.1	0.025

Granularity of layer 3 : $\Delta \eta \times \Delta \phi = 0.050 \times 0.025$

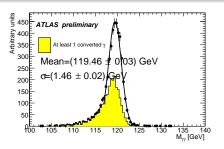
Inner detector

JF Marchand (LAPP) Moriond EW - 11/03/2009

17 / 19

 $H+E_T^{miss}$ and H+1 lepton from associated production

$$H+E_T^{miss}+1$$
 lepton


- ullet Signal : Mainly from $W\!H o \ell
 u \gamma \gamma$ and $t \overline{t} H$
- Background : Mainly from $t\bar{t}\gamma\gamma$, $W\gamma\gamma$ where W decays to $\ell\nu$ and $W\gamma\to e\nu\gamma$ where the other photon is radiated by the electron or is a jet faking photon

$$H+E_{\tau}^{miss}$$

- Signal : Mainly from $ZH \rightarrow \nu\nu\gamma\gamma$
- Background : Mainly from $t\bar{t}\gamma\gamma$, $Z\gamma\gamma$ and $W\gamma\to e\nu\gamma$ where the other photon is radiated by the electron or is a jet faking photon

Invariant mass and resolution

• Mass resolution is determined from an asymetric Gaussian fit ($[-2\sigma, +3\sigma]$) on the invariant di-photon mass peak

m _H	120GeV		130GeV	
	No pileup	Pileup	No pileup	Pileup
Mass fitted (GeV)	119.46	119.47	129.47	129.41
σ_m (GeV)	1.46	1.52	1.54	1.62

• The relative mass resolution σ_m/m is close to 1.2% degrading by a few percent when $10^{33} {\rm cm}^{-2} {\rm s}^{-1}$ pileup is added

19 / 19