First results from the OPERA

 experimentNatalia Di Marco
L'Aquila University \& INFN on behalf of the OPERA collaboration

Rencontres de Moriond: Electroweak interactions and Unified theories La Thuile, March 7-14 2009

OutLine

- OPERA Physics motivation
- CNGS
- Experimental signature
- The OPERA Detector
- Physics Potential
- The OPERA way ...
- Nuclear emulsion fast automatic scanning
- Preliminary results from the first physics runs

| 37 INSTITUTIONS | | | |
| :--- | :--- | :--- | :--- | ~ 160 PHYSICISTS

OPERA Physics motivation

- \quad SK (1998): atmospheric neutrino anomaly interpretable as $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation
- CHOOZ: no $v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation
- SK oscillation signal confirmed by K2K and MINOS

Direct observation of ν_{τ} appearance still missing

OPERA

(Oscillation Project with Emulsion tRacking Apparatus) is a long baseline neutrino oscillation experiment aiming at the direct observation of the ν_{τ} appearance through the ν_{τ} CC interaction with the target mass, in an initially pure \boldsymbol{v}_{μ} accelerator produced beam .

Cern-Neutrino-to-Gran-Sasso

400 GeV protons on graphite target. Secondary produced particles (π^{+}and K^{+}) are focused in a 1 km decay tunnel producing an intense v_{μ} beam with $\langle\mathrm{E}\rangle \sim 17 \mathrm{GeV} / \mathrm{c}$

$<\mathrm{E}\left(v_{\mu}\right)>$	17 GeV
L	730 km
$\mathrm{~L} / \mathrm{E}$	$43 \mathrm{Km} / \mathrm{GeV}$
$\left(v_{e}+\bar{v}_{e}\right) / v_{\mu}$	0.87%
\bar{v}_{μ} / v_{μ}	4%
v_{τ} prompt	negligible

With the nominal proton intensity ($4.5^{*} 10^{19} \mathrm{pot} / \mathrm{y}$), 200 days/y of data taking and a target mass of 1.3 kton, the number of produced events is:

$$
\begin{aligned}
& \sim 25400 v_{\mu} \mathrm{CC}+\mathrm{NC} \\
& \sim 169 v_{\mathrm{e}}+\bar{v}_{\mathrm{e}} \mathrm{CC}
\end{aligned}
$$

$\Delta \mathrm{m}^{2}\left(\mathrm{eV}^{2}\right)$	Nb of $v_{\tau} \mathrm{CC} \alpha\left(\Delta \mathrm{m}^{2}\right)^{2}$
2.5×10^{-3}	125

Experimental signature: v_{τ} appearance

1

- Target mass O (kton)
(low v interaction cross-section)
- High granularity detector
(τ decay detection, background rejection)
lead - nuclear emulsion target segmented into basic units called bricks

OPERA Detector: target section

BRICK:

57 emulsion films $(300 \mu \mathrm{~m})+56$ lead sheets (1 mm)
■ $10.3 \times 12.8 \times 8.2 \mathrm{~cm}^{3}, 8.6 \mathrm{Kg}, 10 \mathrm{X}_{0}$
■ Changeable Sheet (CS) doublet: 2 more films glued to the downstream face of each brick

- 150000 bricks produced and installed into the target

■ 53 walls $\rightarrow \sim 2850$ bricks/wall
\rightarrow target mass ~ 1.3 kton

OPERA Detector

Each brick wall is followed by a plane of plastic scintillator strips oriented in X-Y direction and coupled by WLS optical fibres to PMTs.

Target Trackers (TT) are conceived to provide:

- Neutrino interaction trigger
- Brick localization

Spectrometers:
-Muon ID, momentum and charge measurement
-Track measurements are performed by RPC planes inserted in the magnet yoke (1.5 T field) and by drift tubes planes to add more precision

Physics potential

Full mixing, 5 years run, 4.5×10^{19} pot $/$ year and target mass $=1.3 \mathrm{kton}$

τ^{-}decay channels	$\varepsilon(\%)$	BR (\%)	Signal $\left(\alpha\left(\Delta \mathrm{m}^{2}\right)^{2}\right)$ $\Delta \mathrm{m}^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}$	Background:
$\tau^{-} \rightarrow \mu^{-}$	17.5	17.7	2.9	0.17
$\tau^{-} \rightarrow \mathrm{e}^{-}$	20.8	17.8	3.5	0.17
$\tau^{-} \rightarrow \mathrm{h}^{-}$	5.8	49.5	3.1	0.24
$\tau^{-} \rightarrow 3 \mathrm{~h}$	6.3	15	0.9	0.17
ALL	$\varepsilon \times \mathrm{BR}=10.6 \%$	10.4	0.75	

Expected background:

- Charmed particles produced in $\nu_{\mu} \mathrm{CC}$ and NC interaction
- Hadron re-interactions in lead
- Large angle scattering: muons produced in v_{μ} CC events
- $\quad \pi^{0}$ misidentification

Occur if primary muon is not detected and possible wrong charge measurement of secondary muon. Muon ID is very crucial issue for the experiment!

OPERA how to

- Trigger + select "on time" event with CNGS

Electronic detectors information are processed by a software reconstruction program (brick finding algorithm) that selects the brick with the highest probability to contain the neutrino interaction vertex

- The brick is removed by the Brick Manipulation System (BMS) and exposed to (frontal) \boldsymbol{X}-rays to ensure a common reference system between CSd and brick
- The CSd is separated from the brick, developed and analysed in one of the two CS Scanning Stations, located in Europe (LNGS) and in Japan (Nagoya)
- If any track related to the event is found in the CSd, the brick is exposed to (lateral) \boldsymbol{X}-rays beam and to cosmic rays for films alignment. The brick is disassembled and the emulsion films are developed and sent to one of the scanning labs
- Tracks found in the CSd are searched for in the most downstream film of the brick and followed towards the interaction vertex (scan-back procedure)
- A volume scan around the neutrino interaction point is performed and the neutrino vertex is located

Emulsion Scanning

Event reconstruction

-CSd general scan:
$\checkmark 50 \mathrm{~cm}^{2}$ around TT prediction
\checkmark looking for tracks in all the available angular range (typically $\pm 400 \mathrm{mrad}$)
\checkmark alignment between emulsion films performed using X - ray marks ($10 \mu \mathrm{~m}$ accuracy)
-Scan back:

OPERA runs

- 2006: short commissioning run

■ 2007 (24 ${ }^{\text {th }}$ September - 20th October):
$\checkmark \quad 0.082 \times 10^{19} \operatorname{pot}$ (i.e 1.8×10^{13} protons/extraction)
$\checkmark \sim 3.6$ effective nominal days running (32 ± 6 interactions in the bricks expected)
$\checkmark 38$ interactions in the target

- 2008 (June 18th-November 3rd):
$\checkmark \quad 1.782 \times 10^{19}$ pot
$\checkmark 10100$ events on time with the CNGS
$\checkmark \quad \sim 1700$ interactions in the bricks
$\checkmark \quad 0.7 \tau$ events expected

2008 Run

2008 Run: vertex location summary

Event analysis@ 2009, March 10th

	NC	CC	Total
Vertices located in the brick	72	412	484
Events in dead material	1	10	11

Estimation of the upper and lower limit in the event location on a data subsample:

	NC	CC	Total
Scanning started	74	388	462
CS to brick connected	67	368	435
Vertices located in the brick	43	293	336
Tracks passing through the brick	8	23	31
Events in dead material	1	7	8

Upper limit
NC: $\sim 91 \%$

Dead material 8/336~2\%

And now ...let's open the box!

Vertex in emulsion

NC event

Charm 1(2007 Run)

Charm 2 (2008 Run)

Conclusions

- The OPERA detector is completed and it is now massive with 1.3 kton of lead-emulsion target
- Emulsion scanning laboratories and infrastructures are operational
- 2008 Run: from June $18^{\text {th }}$ to November $3^{\text {rd }}$
- Partial recovery of the beam after a rather problematic start: 1.78×10^{19} pot instead of 2.2×10^{19} p.o.t.
- ~ 1700 events recorded... analysis is on-going
- sample to fine tune OPERA analysis and to estimate efficiencies and background
- Expectations for 2009 (Start May 21th - End November 23 ${ }^{\text {rd }}$):
- 166 days
- $2.4 \times 10^{13} \mathrm{pot} /$ extraction $\Rightarrow 3.5 \times 10^{19}$ pot $\Rightarrow \sim 3500$ events

Looking forward to see... the first τ event!!!

