First results from the OPERA experiment

Natalia Di Marco

L'Aquila University & INFN

on behalf of the **OPERA** collaboration

Rencontres de Moriond: Electroweak interactions and Unified theories La Thuile, March 7-14 2009

OutLine

- OPERA Physics motivation
- CNGS
- Experimental signature
- The OPERA Detector
- Physics Potential
- The OPERA way ...
- Nuclear emulsion fast automatic scanning
- Preliminary results from the first physics runs

OPERA Physics motivation

- SK (1998): atmospheric neutrino anomaly interpretable as $v_{\mu} \rightarrow v_{\tau}$ oscillation
- CHOOZ: no $\nu_{\mu} \rightarrow \nu_{e}$ oscillation
- SK oscillation signal confirmed by K2K and MINOS

Direct observation of v_{τ} appearance still missing

OPERA

(Oscillation Project with Emulsion tRacking Apparatus) is a long baseline neutrino oscillation experiment aiming at the direct observation of the ν_{τ} appearance through the ν_{τ} CC interaction with the target mass, in an initially pure ν_{u} accelerator produced beam .

Cern-Neutrino-to-Gran-Sasso

400 GeV protons on graphite target. Secondary produced particles (π^+ and K⁺) are focused in a 1 km decay tunnel producing an intense ν_{μ} beam with < E > \sim 17 GeV/c

x 10 ⁹ 0.4	F. Pos	σ _{τ cc} (arbitrary n ² = 3 10	units)
0.35	ת ל ייי	Life.		
0.4 0.35 0.3 0.25	إكل	Salar Property of	Nagar J	
0.25	J		month of the sand	No. of Street, or other Persons.
0.2		ነ		- Park
0.15	v fluenc	ا م		
0.1	T _µ ndor <u>to</u>	-		
0.05		L,		
0 5	10 15 20	25 30	35 40	45 5
0 5	10 15 20	20 00	35 40	E (Ge

<Ε (ν _μ)>	17 GeV
L	730 km
L/E	43 Km/GeV
$(v_e + \bar{v_e})/v_{\mu}$	0.87%
$\bar{\nu}_{\mu}$ / ν_{μ}	4%
v_{τ} prompt	negligible

With the nominal proton intensity (4.5*10¹⁹ pot/y), 200 days/y of data taking and a target mass of 1.3 kton, the number of produced events is:

$$\sim 25400 \ v_{\mu} \ CC+NC$$

$$\sim 169 \ v_{e} \ + \overline{v}_{e} \ CC$$

$\Delta m^2 (eV^2)$	Nb of v_{τ} CC α $(\Delta m^2)^2$
2.5×10^{-3}	125

Experimental signature: v_{τ} appearance

$$\begin{array}{ccc} & & & & & & & \\ \nu_{\mu} & & & & & \\ \nu_{\tau} & + N \rightarrow & \tau^{-} + X \\ & & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

$$\tau^{-} \rightarrow \begin{cases} & \mu^{-} \ \nu_{\tau} \ \overline{\nu}_{\mu} & \text{B. R.} \sim 17\% \\ & h^{-} \ \nu_{\tau} \ n(\pi^{\circ}) & \text{B. R.} \sim 50\% \\ & e^{-} \ \nu_{\tau} \ \overline{\nu}_{e} & \text{B. R.} \sim 18\% \\ & \pi^{+} \ \pi^{-} \ \pi^{-} \ \nu_{\tau} \ n(\pi^{\circ}) & \text{B. R.} \sim 14\% \end{cases}$$

 $c\tau \sim 87 \mu m$

• Target mass O(kton)

(low v interaction cross-section)

• High granularity detector

 $(\tau \text{ decay detection, background rejection})$

<u>lead – nuclear emulsion target</u> <u>segmented into basic units</u> <u>called *bricks*</u>

OPERA Detector: target section

BRICK:

57 emulsion films (300 μ m) + 56 lead sheets (1 mm)

- 10.3 x 12.8 x 8.2 cm³, 8.6 Kg, 10 X_0
- Changeable Sheet (CS) doublet: 2 more films glued to the downstream face of each brick
- 150000 bricks produced and installed into the target
- 53 walls $\rightarrow \sim 2850$ bricks/wall
 - \rightarrow target mass ~ 1.3 kton

OPERA Detector

Each brick wall is followed by a plane of plastic scintillator strips oriented in X-Y direction and coupled by WLS optical fibres to PMTs.

Target Trackers (TT) are conceived to provide:

- Neutrino interaction trigger
- Brick localization

Spectrometers:

- •Muon ID, momentum and charge measurement
- •Track measurements are performed by RPC planes inserted in the magnet yoke (1.5 T field) and by drift tubes planes to add more precision

Physics potential

Full mixing, 5 years run, 4.5×10^{19} pot / year and target mass = 1.3 kton

τ ⁻ decay channels	ε(%)	BR (%)	Signal (α (Δ m ²) ²) Δ m ² = 2.5 x 10 ⁻³ eV ²	Background:
$ au^{-} ightarrow \mu^{-}$	17.5	17.7	2.9	0.17
$ au^{-} ightarrow e^{-}$	20.8	17.8	3.5	0.17
$ au^{\scriptscriptstyle{-}} ightarrow \mathbf{h}^{\scriptscriptstyle{-}}$	5.8	49.5	3.1	0.24
$ au^{\scriptscriptstyle{-}} ightarrow 3 h$	6.3	15	0.9	0.17
ALL	εxBR	=10.6%	10.4	0.75

Expected background:

- Charmed particles produced in ν_{μ} CC and NC interaction
- Hadron re-interactions in lead
- Large angle scattering: muons produced in $\mathbf{v}_{\mathbf{u}}$ CC events
- π^0 misidentification

Occur if primary muon is not detected and possible wrong charge measurement of secondary muon. Muon ID is very crucial issue for the experiment!

OPERA how to

- *Trigger* + select "on time" event with CNGS
- Electronic detectors information are processed by a software reconstruction program (*brick finding* algorithm) that selects the brick with the highest probability to contain the neutrino interaction vertex
- The brick is removed by the *Brick Manipulation System (BMS)* and exposed to *(frontal) X-rays* to ensure a common reference system between CSd and brick
- The CSd is separated from the brick, developed and analysed in one of the two *CS Scanning Stations*, located in Europe (LNGS) and in Japan (Nagoya)
- If any track related to the event is found in the CSd, the brick is exposed to *(lateral) X-rays* beam and to *cosmic rays* for films alignment. The brick is disassembled and the emulsion films are *developed* and sent to one of the scanning labs
- Tracks found in the CSd are searched for in the most downstream film of the brick and followed towards the interaction vertex (*scan-back* procedure)
- A *volume scan* around the neutrino interaction point is performed and the neutrino vertex is located

Emulsion Scanning

European Scanning System (ESS)

S-UTS (Japan)

asylicinolious Dily soliwaic

Event reconstruction

•CSd general scan:

- ✓ 50 cm² around TT prediction
- ✓ looking for tracks in all the available angular range (typically \underline{V}_{μ} ±400 mrad)
- ✓ alignment between emulsion films performed using X ray marks (10µm accuracy)

Scan back:

Moriond EW 09

N. Di Marco – L'Aquila Univ.

OPERA runs

- **2006**: short commissioning run
- **2007** (24th September 20th October):
 - \checkmark 0.082 x 10¹⁹ pot (i.e 1.8 x 10¹³ protons/extraction)
 - \checkmark ~ 3.6 effective nominal days running (32±6 interactions in the bricks expected)
 - ✓ 38 interactions in the target
- **2008** (June 18th-November 3rd):
 - \checkmark 1.782 x 10¹⁹ pot
 - ✓ 10100 events on time with the CNGS
 - \checkmark ~1700 interactions in the bricks
 - \checkmark 0.7 τ events expected

2008 Run

2008 Run: vertex location summary

Event analysis @ 2009, March 10th

	NC	CC	Total
Vertices located in the brick	72	412	484
Events in dead material	1	10	11

Estimation of the upper and lower limit in the event location on a data subsample:

	NC	CC	Total
Scanning started	74	388	462
CS to brick connected	67	368	435
Vertices located in the brick	43	293	336
Tracks passing through the brick	8	23	31
Events in dead material	1	7	8

Upper limit

NC: ~ 91%

CC: ~ 95%

PREDWET limit

NC: ~ 66%

CC: ~ 82%

Dead material

8/336 ~ 2%

And now ...let's open the box!

Vertex in emulsion

NC event

Charm 1(2007 Run)

Conclusions

- The OPERA detector is completed and it is now massive with 1.3 kton of lead-emulsion target
- Emulsion scanning laboratories and infrastructures are operational
- 2008 Run: from June 18th to November 3rd
 - Partial recovery of the beam after a rather problematic start: 1.78×10^{19} pot instead of 2.2×10^{19} p.o.t.
 - □ ~1700 events recorded... analysis is on-going
 - sample to fine tune OPERA analysis and to estimate efficiencies and background
- Expectations for 2009 (Start May 21th End November 23rd):
 - 166 days
 - □ 2.4 x 10^{13} pot/extraction \Rightarrow 3.5 x 10^{19} pot \Rightarrow ~3500 events

Looking forward to see... the first τ event!!!