

Genova

Borexino Collaboration

Kurchatov Institute (Russia)

Jagiellonian U. Cracow (Poland)

Heidelberg (Germany)

Dubna JINR (Russia)

Munich (Germany)

The Experimental Site

Borexino is located in the LNGS Underground Laboratory in the mountains of Abruzzo, Italy.

Shielding provided by 1400m of rock: ~3800 m.w.e

Expected Spectrum in Borexino

Low threshold of 200keV because of high radioactive purity:

1.6·10⁻¹⁷ g/g 238|| 6.8·10⁻¹⁸ g/g 232**T**h

Neutrino detection principle: Electron scattering

$$\nu$$
+e \rightarrow ν +e \rightarrow

First real-time measurement down to 200keV. First simultaneous measurement of solar neutrinos from vacuum dominated and matter-enhanced oscillation regions.

Expected rates:

⁷Be: ~ 50 c/d/100t

~0.3 c/d/100t

⁷Be Solar Neutrino Flux

Spectrum of 192 live days

Applied cuts:

- Muons rejected
- 2ms cut after each muon
- Rn daughters vetoed
- FV cut

Theoretical rate

MSW-LMA:

no oscillation:

49±3_{stat}±4_{sys}c/d/100t

48±4 c/d/100t

75±4 c/d/100t

Hypothesis of no oscillation for ⁷Be solar neutrinos is rejected by the measurement at 4σ .

Calculation of the pp & CNO Fluxes

(Combining the Borexino results with other Experiments)

$$R_{k} = \sum_{i} R_{i,k} f_{i} P_{ee}^{i,k} \qquad f_{i} = \frac{\Phi_{i_{measured}}}{\Phi_{i_{predicted}}}$$

 $R_{i,k}$ = expected rate of source i for experiment k at the nominal SSM flux $P_{ee}^{i,k}$ = survival probability for source i above the threshold for experiment k k = Homestake, Gallex $i = pp, pep, CNO, ^7Be, ^8B$

= 0.83±0.07, measured by SNO and SuperK = 1.02±0.10 given by the Borexino results

Performing a χ^2 based analysis of all neutrino experiments adding the luminosity constraint:

$$f_{pp} = 1.005^{+0.008}_{-0.020} (1\sigma)$$

 $f_{CNO} < 3.80 (90% C.L.)$

This represents the best determination of the pp solar neutrino flux.

⁸B Solar Neutrino Flux

Spectrum of 246 live days measurement.

Cosmogenic background sources:

- Muons
- Muon induced secondaries
- Muon induced radionuclides

Internal background:

- Radon emanation from the nylon vessel
- •208Tl contamination of the scintillator

⁸B Solar Neutrino Flux

	Threshold	Φ^{ES}_{8B}
	$[\mathrm{MeV}]$	$[10^6 \text{ cm}^{-2} \text{ s}^{-1}]$
SuperKamiokaNDE I (8)	5.0	$2.35 \pm 0.02 \pm 0.08$
SuperKamiokaNDE II (9)	7.0	$2.38 \pm 0.05 ^{+0.16}_{-0.15}$
SNO D_2O (7)	5.0	$2.39 {}^{+0.24}_{-0.23} {}^{+0.12}_{-0.12}$
SNO Salt Phase (6)	5.5	$2.35 \pm 0.22 \pm 0.15$
SNO Prop. Counter (10)	6.0	$1.77 {}^{+0.24}_{-0.21} {}^{+0.09}_{-0.10}$
Borexino	5.0	$2.75 \pm 0.54 \pm 0.17$
Borexino	2.8	$2.65 \pm 0.44 \pm 0.18$

Measured ⁸B neurino rate:

Expected rate (SSM and MSW-LMA):

0.26±0.04_{stat}±0.02_{sys} c/d/100t 0.27±0.03 c/d/100t

Non-oscillation excluded at 4.20

Survival Probability

Assuming the SSM and MSW-LMA solution the measurement of 7Be and 8B neutrino rate corresponds to:

$$P_{ee}(^{7}Be) = 0.56\pm0.10$$

 $P_{ee}(^{8}B) = 0.35\pm0.10$ at the effective energy of 8.6MeV

Measurement is in agreement with the prediction of the MSW-LMA solution for solar neutrinos.

Summary

Achieved so far:

- First real-time measurement of ⁷Be neutrinos
- First real-time measurement of ⁸B neutrinos down to an energy of 2.8MeV using a liquid scintillator
- · First simultaneous measurement of solar neutrinos from vacuum dominated and matter-enhanced oscillation regions
- Current best limits for pp- and CNO-neutrinos

In progress:

- Direct measurement of pep- and CNO-neutrinos
- Source calibration to decrease systematic errors

In future:

- Measurement of the solar pp-flux
- Antineutrino observations (geoneutrinos, reactor, from the sun)
- Supernova neutrinos and antineutrinos (joining SNEWS during 2009)