Reheating in an early supersymmetric universe

Anna Kamińska

(in cooperation with Paweł Pachołek) arXiv:0901.0478

Institute of Theoretical Physics University of Warsaw

11.03.09

Inflation

Inflation

accelerated expansion of the universe

Inflation

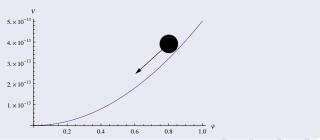
Inflation

accelerated expansion of the universe

Example

$$V \supset \frac{1}{2}m^2\varphi^2 \tag{1}$$

 φ - inflaton field



Preheating

Preheating

very efficient non-perturbative particle production during inflaton oscillations

Preheating

Preheating

very efficient non-perturbative particle production during inflaton oscillations

Toy model

$$V \supset \frac{1}{2}m^2\varphi^2 + A\varphi^2\chi^2 + Bm\varphi\chi^2 \tag{2}$$

 φ - inflaton field, χ - represents the inflaton decay products

$$\omega_{\chi_k}^2 = k^2 + 2A \langle \varphi \rangle^2 + 2Bm \langle \varphi \rangle \tag{3}$$

$$| au| \equiv \left| \frac{\dot{\omega}}{\omega^2} \right| > 1 \leftrightarrow \textit{preheating}$$
 (4)

Preheating and flat directions

Flat direction

- general feature of supersymmetric models
- direction in field-space, along which the scalar potential identically vanishes (when all other field VEVs=0)

Preheating and flat directions

Flat direction

- general feature of supersymmetric models
- direction in field-space, along which the scalar potential identically vanishes (when all other field VEVs=0)

Toy model with a **flat direction**

(Allahverdi, Mazumdar '07)

$$V \supset \frac{1}{2}m^2\varphi^2 + A\varphi^2\chi^2 + Bm\varphi\chi^2 + C\alpha^2\chi^2$$
 (5)

 α - parameterizes the flat direction

$$\omega_{\chi_k}^2 = k^2 + 2A \langle \varphi \rangle^2 + 2Bm \langle \varphi \rangle + 2C \langle \alpha \rangle^2$$
 (6)

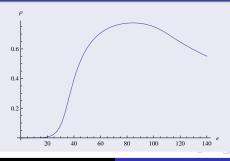
Goal

- construct a consistent model of inflation and particle production in a supersymmetric framework
- generate large flat direction VEVs during inflation
 - create a potential for the flat direction → supergravity
 - consider classical evolution of VEVs during inflation

Goal

- construct a consistent model of inflation and particle production in a supersymmetric framework
- generate large flat direction VEVs during inflation
 - create a potential for the flat direction → supergravity
 - consider classical evolution of VEVs during inflation

Evolution of flat direction VEV during inflation



Preheating

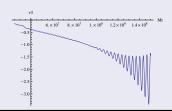
- check the impact of large flat direction VEVs on particle production
 - consider excitations around VEVs
 - study the evolution of the mass matrix
 - determine if preheating from the inflaton is possible

Preheating

- check the impact of large flat direction VEVs on particle production
 - consider excitations around VEVs
 - study the evolution of the mass matrix
 - determine if preheating from the inflaton is possible

Efficient channel of preheating

the time evolution of light mass eigenvalues connected with the flat direction leads to non-perturbative particle production





 Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential

- Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential
- Such large VEVs can block preheating from the inflaton into certain channels

- Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential
- Such large VEVs can block preheating from the inflaton into certain channels
- Supergravity effects are a source of light, rapidly changing eigenvalues of the mass matrix connected with flat directions. They allow the non-perturbative production of particles from the flat direction and preheating from the inflaton.

- Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential
- Such large VEVs can block preheating from the inflaton into certain channels
- Supergravity effects are a source of light, rapidly changing eigenvalues of the mass matrix connected with flat directions. They allow the non-perturbative production of particles from the flat direction and preheating from the inflaton.
- Non-perturbative particle production from the inflaton is likely to remain the source of preheating even in the initial presence of large flat direction VEVs.

Inflaton sector

M. Kawasaki, M. Yamaguchi, T. Yanagida "'Natural Chaotic Inflation in Supergravity"

Φ - inflaton superfield, X - auxiliary superfield

Inflaton sector

- M. Kawasaki, M. Yamaguchi, T. Yanagida "'Natural Chaotic Inflation in Supergravity"
- Φ inflaton superfield, X auxiliary superfield
 - shift symmetry in the inflaton superfield in order to avoid the eta problem

$$K \supset \frac{1}{2}(\Phi + \Phi^{\dagger})^2 + X^{\dagger}X, \qquad \Phi = (\eta + i\varphi)/\sqrt{2}$$
 (7)

 φ - inflaton field

Inflaton sector

- M. Kawasaki, M. Yamaguchi, T. Yanagida "'Natural Chaotic Inflation in Supergravity"'
- Φ inflaton superfield, X auxiliary superfield
 - shift symmetry in the inflaton superfield in order to avoid the eta problem

$$K \supset \frac{1}{2}(\Phi + \Phi^{\dagger})^2 + X^{\dagger}X, \qquad \Phi = (\eta + i\varphi)/\sqrt{2}$$
 (7)

 φ - inflaton field

 auxiliary field X in order to obtain chaotic inflation potential during inflaton domination

$$W \supset mX\Phi$$
 (8)

$$V \stackrel{inflaton}{\longrightarrow} \frac{domination}{2} \frac{1}{2} m^2 \varphi^2$$
 (9)

Observable sector

MSSM superpotential

$$W \supset W_{MSSM}$$
 (10)

Observable sector

MSSM superpotential

$$W \supset W_{MSSM}$$
 (10)

coupling with the inflaton sector

$$W \supset 2hXH_uH_d \tag{11}$$

$$H_d = rac{1}{\sqrt{2}} \left(egin{array}{c} \chi \\ 0 \end{array}
ight), \quad H_u = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \\ \chi \end{array}
ight), \quad \chi = c \mathrm{e}^{i\kappa} \quad ext{(12)}$$

Observable sector

MSSM superpotential

$$W \supset W_{MSSM}$$
 (10)

coupling with the inflaton sector

$$W \supset 2hXH_uH_d \tag{11}$$

$$H_d = rac{1}{\sqrt{2}} \left(egin{array}{c} \chi \ 0 \end{array}
ight), \quad H_u = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \ \chi \end{array}
ight), \quad \chi = c \mathrm{e}^{i\kappa} \quad ext{(12)}$$

representative flat direction udd

$$u_i^{\beta} = d_j^{\gamma} = d_k^{\delta} = \frac{1}{\sqrt{3}}\alpha, \quad \alpha = \rho e^{i\sigma}$$
 (13)

Observable sector

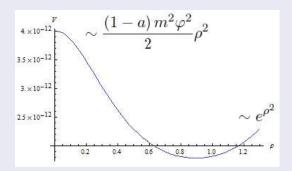
non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right) \tag{14}$$

Observable sector

non-minimal Kähler

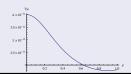
$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right)$$
(14)



Observable sector

non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right) \tag{14}$$



Observable sector

non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right) \tag{14}$$

non-renormalisable terms

$$W \supset \frac{\lambda_{\chi}}{M_{Pl}} (H_u \cdot H_d)^2 + \frac{3\sqrt{3}\lambda_{\alpha}}{M_{Pl}} (u_i d_j d_k \nu_R)$$
 (15)

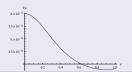
Observable sector

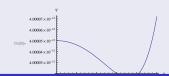
non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right) \tag{14}$$

non-renormalisable terms

$$W \supset \frac{\lambda_{\chi}}{M_{Pl}} (H_u \cdot H_d)^2 + \frac{3\sqrt{3}\lambda_{\alpha}}{M_{Pl}} (u_i d_j d_k \nu_R)$$
 (15)





Initial conditions

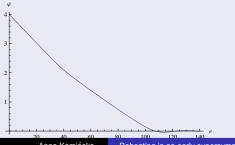
- $\varphi_0 \sim 4 M_{Pl}$ allows to study the last \sim 100 e-folds of inflation
- small initial VEVs (α_0 , $\chi_0 \sim \delta \alpha$, $\delta \chi \sim H$) for *udd* and $H_u H_d$ directions

Initial conditions

- $\varphi_0 \sim 4M_{Pl}$ allows to study the last ~ 100 e-folds of inflation
- small initial VEVs (α_0 , $\chi_0 \sim \delta \alpha$, $\delta \chi \sim H$) for udd and $H_u H_d$ directions

Evolution of the inflaton

$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0 \tag{16}$$



Initial conditions

- $\varphi_0 \sim 4 M_{Pl}$ allows to study the last \sim 100 e-folds of inflation
- small initial VEVs (α₀, χ₀ ~ δα, δχ ~ H) for udd and H_uH_d directions

Evolution of the inflaton

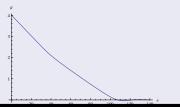
$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0 \tag{16}$$

Initial conditions

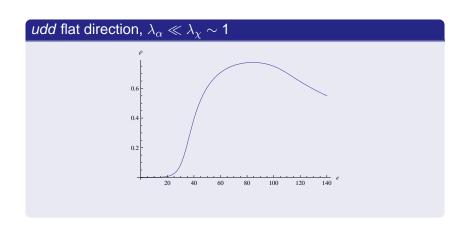
- $\varphi_0 \sim 4 M_{Pl}$ allows to study the last \sim 100 e-folds of inflation
- small initial VEVs (α_0 , $\chi_0 \sim \delta \alpha$, $\delta \chi \sim H$) for *udd* and $H_u H_d$ directions

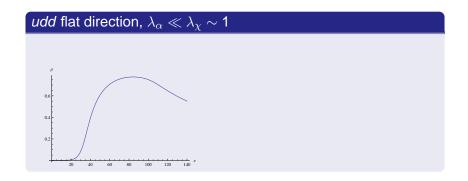
Evolution of the inflaton

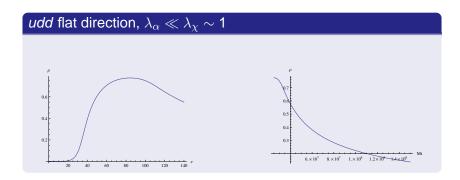
$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0 \tag{16}$$



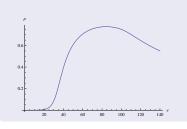
udd flat direction, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$







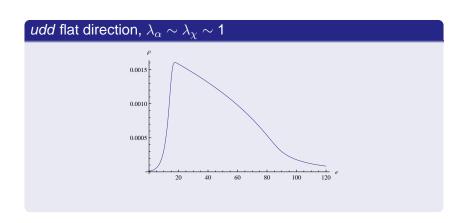
udd flat direction, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

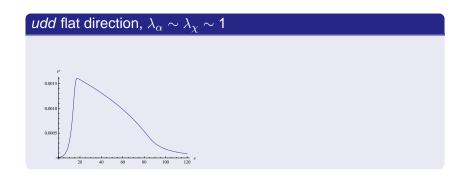


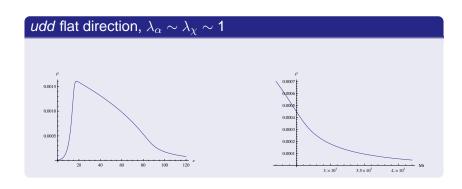
H_uH_d direction, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

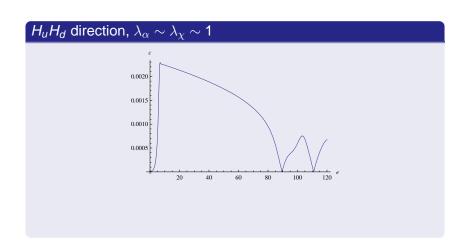


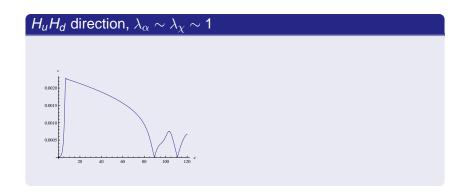
udd flat direction, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

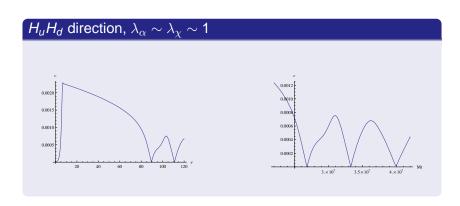




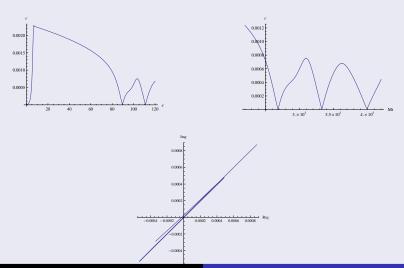






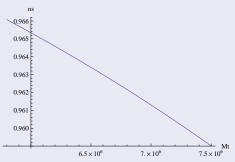


H_uH_d direction, $\lambda_{\alpha}\sim\lambda_{\chi}\sim1$



Spectral index

values of the spectral index 50-60 e-folds before the end of inflation in the slow-roll approximation



WMAP5: $n_s = 0.960^{+0.014}_{-0.013}$

Parameterization of excitations

• consider excitations around fields belonging to H_u , H_d , u_i , d_j and d_k multiplets

Parameterization of excitations

 consider excitations around fields belonging to H_u, H_d, u_i, d_i and d_k multiplets

$$VEV \neq 0 \longrightarrow field = (|VEV| + \xi_a) e^{i(phase(VEV) + \xi_b)}$$
 (17)

Parameterization of excitations

 consider excitations around fields belonging to H_u, H_d, u_i, d_i and d_k multiplets

$$VEV \neq 0 \longrightarrow field = (|VEV| + \xi_a) e^{i(phase(VEV) + \xi_b)}$$
 (17)

$$VEV = 0 \longrightarrow field \sim \delta_a + i\delta_b$$
 (18)

Constructing the mass matrix

Basbøll '08

introduce excitations into the Lagrangian

$$L \supset \frac{1}{2} \partial_{\mu} \Xi^{T} \partial^{\mu} \Xi - \frac{1}{2} \Xi^{T} \underbrace{\left(M_{V}^{2} + M_{kin}^{2}\right)}_{M^{2}} \Xi - \dot{\Xi}^{T} U \Xi, \ \Xi = \left(\xi_{i}, \ \delta_{i}\right)^{T}$$

$$\tag{19}$$

where *U* is antisymmetric

Constructing the mass matrix

Basbøll '08

introduce excitations into the Lagrangian

$$L \supset \frac{1}{2} \partial_{\mu} \Xi^{T} \partial^{\mu} \Xi - \frac{1}{2} \Xi^{T} \underbrace{\left(M_{V}^{2} + M_{kin}^{2}\right)}_{M^{2}} \Xi - \dot{\Xi}^{T} U \Xi, \ \Xi = \left(\xi_{i}, \ \delta_{i}\right)^{T}$$

$$\tag{19}$$

where *U* is antisymmetric

transformation to the "'inertial frame"' of excitations

$$U = \dot{A}^T A, \ \tilde{\Xi} = A \Xi \longrightarrow L \supset \frac{1}{2} |\partial_{\mu} \tilde{\Xi}|^2 - \frac{1}{2} \tilde{\Xi}^T \tilde{M}^2 \tilde{\Xi}$$
 (20)

$$\tilde{M}^2 = A \left(M^2 - U^2 \right) A^T = C M_{diag}^2 C^T$$
 (21)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

$$\tilde{M}^{2} = \begin{pmatrix} M_{8\times8}^{2} [H_{u}H_{d}] & 0\\ 0 & M_{10\times10}^{2} [udd] \end{pmatrix}$$
 (22)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim$ 1

$$\tilde{M}^{2} = \begin{pmatrix} M_{8\times8}^{2} \left[H_{u} H_{d} \right] & 0\\ 0 & M_{10\times10}^{2} \left[u d d \right] \end{pmatrix}$$
 (22)

 $M_{8\times8}^2 [H_u H_d]$ has two different eigenvalues

$$m_1^2 \approx -\frac{m\varphi}{2} \left(2\sqrt{2}h + (a-1) \, m\varphi \right) + \frac{Y^2}{3} \rho^2 + \dots$$
 (23)

$$m_2^2 \approx -\frac{m\varphi}{2} \left(-2\sqrt{2}h + \underbrace{(a-1)\,m\varphi}_{SUGRA} \right) + \frac{Y^2}{3}\rho^2 + \dots$$
 (24)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim$ 1

$$\tilde{M}^{2} = \begin{pmatrix} M_{8\times8}^{2} [H_{u}H_{d}] & 0\\ 0 & M_{10\times10}^{2} [udd] \end{pmatrix}$$
 (22)

 $M_{8\times8}^2 [H_u H_d]$ has two different eigenvalues

$$m_1^2 \approx -\frac{m\varphi}{2} \left(2\sqrt{2}h + (a-1) \, m\varphi \right) + \frac{Y^2}{3} \rho^2 + \dots$$
 (23)

$$m_2^2 \approx -\frac{m\varphi}{2} \left(-2\sqrt{2}h + \underbrace{(a-1)\,m\varphi}_{SUGRA} \right) + \frac{Y^2}{3}\rho^2 + \dots$$
 (24)

Toy model analogy

$$m_{\chi}^{2} = 2A \langle \varphi \rangle^{2} + 2Bm \langle \varphi \rangle + 2C \langle \alpha \rangle^{2}$$
 (25)

 $SU(3) \times U(1) \rightarrow U(1)$

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

$$M^{2}[udd] = \begin{pmatrix} M_{1\times1}^{2}[p] & & & & \\ & M_{3\times3}^{2}[f] & & & & \\ & & M_{1\times1}^{2}[1] & & & \\ & & & & M_{1\times1}^{2}[6] \end{pmatrix}$$
(26)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\gamma} \sim 1$

$$SU(3) \times U(1) \rightarrow U(1)$$

$$M^{2}[udd] = \begin{pmatrix} M_{1\times1}^{2}[p] & & & & \\ & M_{3\times3}^{2}[f] & & & \\ & & M_{1\times1}^{2}[1] & & \\ & & & & M_{1\times1}^{2}[6] \end{pmatrix}$$
(26)

$$M^{2}[1] \approx \frac{g^{2}}{3}\rho^{2} + \underbrace{-\frac{m^{2}\varphi^{2}}{2}(a-1)}_{SUGRA} + \dots$$
 (27)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

 $M_{3\times3}^2[f]$ has two heavy eigenvalues

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

 $M_{3\times3}^2$ [f] has two heavy eigenvalues and one naturally light eigenvalue corresponding to $\left(\xi_{u_i} + \xi_{d_j} + \xi_{d_k}\right)/\sqrt{3}$

$$m_{\text{abs}}^2 \approx \underbrace{-\frac{m^2 \varphi^2}{2} (a-1) + f(a) \frac{m^2 \varphi^2}{2} \rho^2}_{\text{SUGRA}} + \dots$$
 (28)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\gamma} \sim$ 1

 $M_{3\times3}^2$ [f] has two heavy eigenvalues and one naturally light eigenvalue corresponding to $\left(\xi_{u_i} + \xi_{d_j} + \xi_{d_k}\right)/\sqrt{3}$

$$m_{abs}^2 \approx \underbrace{-\frac{m^2 \varphi^2}{2} (a-1) + f(a) \frac{m^2 \varphi^2}{2} \rho^2}_{SUGRA} + \dots$$
 (28)

the excitation around the phase of the flat direction VEV corresponds also to a naturally light eigenvalue

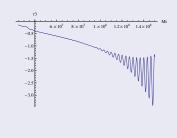
$$M_{1\times1}^{2}[p] \approx \underbrace{(1-a)\frac{m^{2}\varphi^{2}}{2} + g(a)\frac{m^{2}\varphi^{2}}{2}\rho^{2}}_{SUGRA} + ...$$
 (29)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim$ 1

the time evolution of both m_{abs}^2 and $M_{1\times 1}^2$ [p] leads to non-perturbative particle production

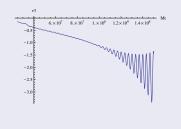
Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

the time evolution of both m_{abs}^2 and $M_{1\times 1}^2$ [p] leads to non-perturbative particle production



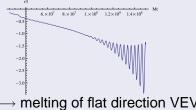
Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

the time evolution of both m_{abs}^2 and $M_{1\times 1}^2$ [p] leads to non-perturbative particle production



Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

the time evolution of both m_{abs}^2 and $M_{1\times 1}^2$ [p] leads to non-perturbative particle production



— melting of flat direction VEV and unblocking all other channels of preheating

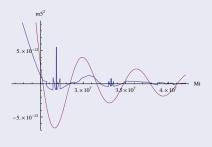
Analyzing the mass matrix evolution, $\lambda_{\alpha} \sim \lambda_{\chi} \sim$ 1

$$SU(3) \times SU(2) \times U(1) \rightarrow U(1)$$

Analyzing the mass matrix evolution, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

 $SU(3) \times SU(2) \times U(1) \rightarrow U(1)$

an example of a naturally light eigenvalue corresponding to a combination of excitations around VEVs of complex fields α and χ parameterizing the (quasi) flat directions



Analyzing the mass matrix evolution, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

 $SU(3)\times SU(2)\times U(1)\to U(1)$

an example of a naturally light eigenvalue corresponding to a combination of excitations around VEVs of complex fields α and χ parameterizing the (quasi) flat directions

— very efficient preheating into Higgs particles allowed from the beginning of inflaton oscillations

