

CLEO'S IMPACT ON CKM

Phil Rubin (George Mason University) For the **CLEO** Collaboration

Recent Results

• $|V_{cd}|, |V_{cs}| \Rightarrow |V_{ub}| \text{ from } D \rightarrow (K/\pi)ev$

•
$$f_{D_s^+} \Rightarrow f_B$$
, f_{B_s} from $D_s^+ \to \ell^+ \nu$

• γ/ϕ_3 with help from $D \to Kn\pi$

$|V_{cd}|$ and $|V_{cs}|$, etc.

Cabibbo-Kobayashi-Maskawa Mixing Matrix

- $\Gamma_{ij} \propto |f|^2 |V_{ij}|^2$
- LQCD comparisons and form factor shape constraints

- Compare $f_{D_s^+}$ to LQCD calculations
- LQCD also predicts, e.g., f_B , f_B , f_B , f_B
- Verification facilitates determination of

$$-|V_{ub}| \text{ from } B \to \ell \nu$$

- $|V_{td}|$ from $B^0 \bar{B}^0$ mixing
- $|V_{ts}|$ from $B_s \bar{B}_s$ mixing

• Phase of V_{ub} relative to V_{cb}:
$$\gamma = \arg \left(-\frac{\mathbf{V_{ub}^* V_{ud}}}{\mathbf{V_{cb}^* V_{cd}}} \right)$$

- Sensitivity from interference between $b \rightarrow c$ and $b \rightarrow u$ transitions
- σ_γ≥ 10°

CLEO-c

Cornell Electron Storage Ring (CESR)

 Run just above DD Threshold • $\mathcal{L}_{int} = 818 \text{ pb}^{-1}$ $\psi(\mathbf{3770}) \rightarrow \mathbf{D^0 \bar{D}^0}$ C = -1• $\mathcal{L}_{int} \sim 600 \text{ pb}^{-1}$ $E_{cm} = 4170 \text{ MeV}$

D_cD_c* Threshold

CLEO's Impact on CKM

Tagging

- Running near $D\bar{D}$ or $D_s\bar{D}_s^*$ threshold \Rightarrow two-particle production
- Detector hermeticity, and large cross-sections, branching fractions, and luminosities ⇒ efficient reconstruction of ≥ one particle: the tag
- Tagging ⇒ reduced background and kinematic ambiguity

D^- Tag Modes for SL Analysis

$$D^{-} \rightarrow K^{+}\pi^{-}\pi^{-}$$

$$D^{-} \rightarrow K^{+}\pi^{-}\pi^{-}\pi^{0}$$

$$D^{-} \rightarrow K_{S}\pi^{-}\pi^{0}$$

$$D^{-} \rightarrow K_{S}\pi^{-}\pi^{-}\pi^{+}$$

$$D^{-} \rightarrow K^{-}K^{+}$$

$$\mathbf{M}_{bc} \equiv \sqrt{\mathbf{E}_{beam}^{2}} - |\vec{\mathbf{p}}_{D}|^{2}$$

$$\Delta \mathbf{E} = \mathbf{E}_{candidate} - \mathbf{E}_{beam}$$

Dashed line: background

\overline{D}^{0} Tag Modes for SL Analysis

$$\begin{split} \bar{D}^{0} &\to K^{+}\pi^{-} \\ \bar{D}^{0} &\to K^{+}\pi^{-}\pi^{0} \\ \bar{D}^{0} &\to K^{+}\pi^{-}\pi^{0}\pi^{0} \\ \bar{D}^{0} &\to K^{+}\pi^{-}\pi^{-}\pi^{+} \\ \bar{D}^{0} &\to K_{S}\pi^{-}\pi^{+} \\ \bar{D}^{0} &\to K_{S}\pi^{-}\pi^{+}\pi^{0} \\ \bar{D}^{0} &\to K_{S}\pi^{0} \\ \bar{D}^{0} &\to K^{-}K^{+} \end{split}$$

Neutrino (U=0) "Reconstruction"

- $\mathbf{U} \equiv \mathbf{E}_{\mathbf{miss}} |\vec{\mathbf{p}}_{\mathbf{miss}}|$
- Corrected for ~3 mrad crossing angle
- σ_U ≈ 12 MeV (≈ 24 MeV with π⁰)

CLEO's Impact on CKM

Untagged $D \rightarrow (K/\pi)ev$

- Reconstruct v
 4-momentum
- Use with (K/π) and e and require energy consistency
- Better efficiency, more background, larger systematics

$D \rightarrow (K/\pi)$ ev Branching Fractions

- 281 pb⁻¹; full data-set result coming soon
- Resolutions comparable
- Averages include correlations

Branching Fractions [%]

	Tagged	Untagged	Average
π ⁻ e ⁺ v _e	0.308 (13) (4)	0.299 (11) (9)	0.304 (11) (5)
$\pi^0 e^+ v_e$	0.379 (27) (23)	0.373 (22) (13)	0.378 (20) (12)
K⁻e⁺v _e	3.60 (5) (5)	3.56 (3) (9)	3.60 (3) (6)
K ⁰ e+v _e	8.87 (17) (21)	8.53 (13) (23)	8.69 (12) (19)

$\frac{\mathrm{d}\Gamma(\mathrm{D} \to (\mathrm{K}/\pi)\mathrm{e}\nu)}{\mathrm{d}q^2} = \frac{\mathrm{G}_{\mathrm{F}}^2 \left| \mathrm{V}_{\mathrm{cs(cd)}} \right|^2 \mathrm{P}_{\mathrm{K}/\pi}^3}{24\pi^3} \left| \mathrm{f}_+(\mathrm{q}^2) \right|^2}$

CLEO

$|V_{cd}|$ and $|V_{cs}|$ from $D \rightarrow (K/\pi)ev$

- $|V_{cd}| = 0.233 \pm 0.008 \pm 0.003 \pm 0.023$
- Most precise D meson SL decay determination • $|V_{cs}| = 1.019 \pm 0.010 \pm 0.007 \pm 0.106$

Most precise determination

D_s^- Tag Modes for $f_{D_s^+}$

CLEO's Impact on CKM

Identify D_s^+ for $f_{D_s^+}$

Combine γ with tag

$D_s^+ \rightarrow \ell^+ v_{\rho}$ for $f_{D_s^+}$

 $D_s^+ \rightarrow \ell^+ \nu_{\rho}$

D_s^{-} Tag for $D_s^{+} \rightarrow \tau^+ v_{\tau}$

- A second analysis, $au^+
 ightarrow {
 m e}^+
 u_{
 m e} ar{
 u}_{ au}$
 - Tag only $\phi\pi^{-}$, K⁻K^{*0}, and K⁻K⁰
 - Find only e^+ opposite D_s^- tag
 - $-\Delta M(D_s)$ sideband subtraction

$D_s^+ \rightarrow \tau^+ v_{\tau}$ Signal

- Expect extra energy: 100 MeV to 200 MeV from $D_s^* \rightarrow \gamma(\pi^0) D_s$
- Signal E_{extra} < 400 MeV

$f_{D_s^+} \operatorname{from} D_s^+ \to \ell^+ \nu_{\ell}$

Mode	BF (%)	f _{Ds} (MeV)
(1) <i>μν</i>	0.565 ± 0.045 ± 0.017	257.3 ± 10.3 ± 3.9
(2) $\tau \nu$ (with $\tau \rightarrow \pi \nu$)	6.42 ± 0.81 ± 0.18	278.7 ± 17.1 ± 3.8
(3) $\mu\nu$ (eff) ($\tau\nu/\mu\nu$ fixed to SM ratio)	0.591 ± 0.037 ± 0.018	263.3 ± 8.2 ± 5.2
(4) $\tau \nu$ (with $\tau \rightarrow e \nu \nu$)	$5.30 \pm 0.47 \pm 0.22$	252.5 ± 11.1 ± 5.2
CLEO average from (3) & (4)		259.5 ± 6.6 ± 3.1

Coherence

- $C_{\psi(3770)}$ = -1 \Rightarrow D⁰ \overline{D}^0 QM Correlated
- CP-tags along with flavor- and channel-tags
- Model-independent access to decay amplitude size and phase (Dalitz plot)
- \Rightarrow Reduced systematic uncertainty in, e.g., γ/ϕ_3 measurement

$$\begin{split} & \gamma / \phi_{3} \operatorname{Via} D \to K_{S,L} \pi \pi [1] \\ & \cdot \mathcal{A}(\mathrm{B}^{\pm} \to \tilde{\mathrm{D}}^{0} \mathrm{K}^{\pm}) \propto \mathcal{A}_{\mathrm{D}^{0}}(\mathrm{x}, \mathrm{y}) + \mathrm{r}_{\mathrm{B}} \mathrm{e}^{\mathrm{i}(\delta_{\mathrm{B}}} \mathcal{O} \mathcal{A}_{\bar{\mathrm{D}}^{0}}(\mathrm{x}, \mathrm{y}) \\ & \cdot \tilde{\mathrm{D}}^{0} \to \mathrm{K}_{(\mathrm{S})}(\mathrm{K} / \pi) \mathrm{n} \pi & \underbrace{\int_{B^{\pm}} \mathcal{D}^{0} \mathrm{K}^{\pm}}_{r_{B} e^{\mathrm{i}(\delta_{B} \pm \gamma)}} \mathcal{F}(\tilde{D}^{0}) \mathrm{K}^{\pm} \\ & \cdot \mathrm{Without \ mixing \ or \ CP-violation,} \\ & \mathcal{A}_{\bar{\mathrm{D}}^{0}}(\mathrm{x}, \mathrm{y}) = \mathcal{A}_{\mathrm{D}^{0}}(\mathrm{y}, \mathrm{x}) \end{split}$$

- Rates then depend on strong phase difference $\Delta \delta_{\mathbf{D}^0} \equiv \delta_{\mathbf{D}^0}(\mathbf{x}, \ \mathbf{y}) - \delta_{\mathbf{D}^0}(\mathbf{y}, \ \mathbf{x})$
- Interference amplitudes parameterized by $\cos \left[\Delta \delta_{\mathbf{D}^0}(\mathbf{x}, \mathbf{y}) \right] \text{ and } \sin \left[\Delta \delta_{\mathbf{D}^0}(\mathbf{x}, \mathbf{y}) \right]$

γ/ϕ_3 Via $D \rightarrow K_{S,L} \pi \pi$ [2]

- ${\bf \tilde{D}^0} \to {\bf K_S} \pi^+ \pi^-$ Cabibbo favored
- Divide Dalitz plot in 2N bins, indexed *-i to i*, about $x=y \Rightarrow x \leftrightarrow y \Leftrightarrow i \leftrightarrow -i$

- Giri, et al. [PRD 68, 054018 (2003)]

- Bin to minimize $\Delta \delta_{D^0}$ variation within a bin
 - Bondar, et al. [EPJC 47, 347 (2006)]
- Equalize phase difference bins using BaBar isobar model
 - [PRL 95, 121802 (2005)]

γ/ϕ_3 Via $D \rightarrow K_{S,L} \pi \pi$ [3]

γ/ϕ_3 Via $D \rightarrow K_{S,L} \pi \pi$ [4]

Mode	Single Tag	$K_S^0\pi^+\pi^-$	$K_L^0 \pi^+ \pi^-$		
	Yield	Yield	Yield		
Flavor Tags					
$K^{-}\pi^{+}$	144563 ± 403	1447	2858		
$K^-\pi^+\pi^0$	258938 ± 581	2776	5130		
$K^-\pi^+\pi^+\pi^-$	220831 ± 541	2250	4110		
$K^-e^+\nu$	123412 ± 4591	1356	-		
CP-Even Tags					
K^+K^-	12867 ± 126	124	345		
$\pi^+\pi^-$	5950 ± 112	62	172		
$K_{S}^{0}\pi^{0}\pi^{0}$	6562 ± 131	56	-		
$K_L^0 \pi^0$	27955 ± 2013	259	-		
CP-OddTags					
$K_S^0 \pi^0$	19059 ± 150	189	281		
$K_S^0\eta$	2793 ± 69	39	41		
$K_S^0 \omega$	8512 ± 107	83	-		
$K_S^0\pi^+\pi^-$	-	575	867		

γ/ϕ_3 Via $D \rightarrow K_{S,L} \pi \pi$ [5]

i	$(\cos\Delta\delta_{D^\circ})_i$	$(\sin\Delta\delta_{D^{\circ}})_i$
1	$0.743 \pm 0.037 \pm 0.022 \pm 0.013$	$0.014 \pm 0.160 \pm 0.077 \pm 0.045$
2	$0.611 \pm 0.071 \pm 0.037 \pm 0.009$	$0.014 \pm 0.215 \pm 0.055 \pm 0.017$
3	$0.059 \pm 0.063 \pm 0.031 \pm 0.057$	$0.609 \pm 0.190 \pm 0.076 \pm 0.037$
4	$-0.495 \pm 0.101 \pm 0.052 \pm 0.045$	$0.151 \pm 0.217 \pm 0.069 \pm 0.048$
5	$-0.911 \pm 0.049 \pm 0.032 \pm 0.021$	$-0.050 \pm 0.183 \pm 0.045 \pm 0.036$
6	$-0.736 \pm 0.066 \pm 0.030 \pm 0.018$	$-0.340 \pm 0.187 \pm 0.052 \pm 0.047$
7	$0.157 \pm 0.074 \pm 0.042 \pm 0.051$	$-0.827 \pm 0.185 \pm 0.060 \pm 0.036$
8	$0.403 \pm 0.046 \pm 0.021 \pm 0.002$	$-0.409 \pm 0.158 \pm 0.050 \pm 0.002$

- Uncertainty from Δδ_{D⁰} presently contributes 7° to 9° to γ/φ₃ width
- CLEO's model-independent determination should reduce this effect to 2° or less

γ/ϕ_3 Via $D \rightarrow K\pi(n\pi)$ [1]

Atwood-Dunietz-Soni (ADS) Method

$$\begin{array}{l} - \quad \tilde{D}^{0} \rightarrow K^{+}\pi^{-} \\ \Gamma(B^{-} \rightarrow (K^{+}\pi^{-})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos\left(\delta_{B} + \underbrace{\delta_{D}^{K\pi}}{} - \gamma\right) \\ - \quad \tilde{D}^{0} \rightarrow K^{+}\pi^{-}\pi^{-}\pi^{+} \quad \text{coherence factor} \\ \Gamma(B^{-} \rightarrow (K^{+}3\pi)_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2R_{D}^{K3\pi}r_{B}r_{D}^{K3\pi}\cos\left(\delta_{B} + \underbrace{\delta_{D}^{K3\pi}}{} - \gamma\right) \\ - \quad \text{Coherent double-tag rates sensitive to combinations of} \\ \mathbf{R} \text{ and } \delta \\ \cdot K^{\pm}\pi^{\pm}\pi^{-}\pi^{+} vs. \ K^{\pm}\pi^{\pm}\pi^{-}\pi^{+} \Rightarrow \left(R_{D}^{K3\pi}\right)^{2} \end{array}$$

•
$$K^{\pm}\pi^{\pm}\pi^{-}\pi^{+} vs. DP \Rightarrow R_{D}^{K3\pi} \cos\left(\delta_{D}^{K3\pi}\right)$$

• $K^{\pm}\pi^{\pm}\pi^{-}\pi^{+} vs. \ K^{\pm}\pi^{\mp} \Rightarrow R_{D}^{K3\pi}\cos\left(\delta_{D}^{K\pi} - \delta_{D}^{K3\pi}\right)$

CLEO'S IMPACT ON CKM

•
$$|V_{cd}|, |V_{cs}| \Rightarrow |V_{ub}| \text{ from } D \rightarrow (K/\pi)ev$$

PRL 100, 251802 (2008), PRD 77, 112005 (2008) arXiv: 0810.38 (accepted by PRD)

•
$$f_{D_s^+} \Rightarrow f_B$$
, f_{B_s} from $D_s^+ \to \ell^+ \nu$

arXiv:0901.1147 (accepted by PRD) arXiv:0901.1216 (accepted by PRD)

• γ/ϕ_3 with help from $D \to Kn\pi$

ADS K π : PRL 100, 221801 (2008), PRD 78, 012001 (2008) Dalitz K_S and ADS Kn π results to be submitted to PRL, PRD