THEORY SUMMARY

Mariano Quirós ICREA/IFAE Barcelona

44th Rencontres de Moriond Electroweak Session, La Thuile, March 7-14 2009

OUTLINE

- Strong interactions
- Flavor physics
- Extra dimensions
- Dark Matter
- Baryons
- Perspectives in theory

The Standard Model of strong and electroweak interactions is based on the gauge group

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$

- $SU(3)_c$ describes the physics of strong interactions: QCD (see next week conference)
- $SU(2)_L \times U(1)_Y$ describes the physics of weak and electromagnetic interactions
- It has to be spontaneously broken to QED by the Higgs mechanism
 - The Standard Model describes the experimental data with high accuracy

THE STRONG SECTOR

- The theory of strong interactions is well confirmed but the theory becomes nonperturbative at low energies
- It is essential to understand the QCD background at LHC for any discovery: Higgs, new physics,...
- Used techniques are different: pQCD, NRQCD, HQET, chiral Lagrangians, nonperturbative methods (lattice),..., or a combination of all

PERTURBATIVE METHODS:

Giulia Zanderighi

Prerequisite: factorization

NB: factorization used in many contexts without proof

Giulia Zanderighi

Parton densities: recent progress

Recent major progress:

- full NNLO evolution (previous only approximate NNLO)
- full treatment of heavy flavors near the quark mass

[Numerically: e.g. (6-7)% effect on Drell-Yan at LHC]

- more systematic use of uncertainties/correlations
- Neural Network (NN) PDFs

splitting functions at NNLO: Moch, Vermaseren, A. Vogt '04 [+ much related theory progress '04 -'08] Alekhin, CTEQ, MSTW (new MSTW '09), NN collaboration

Recently on the market: toolkits for NNLO DGLAP evolution of PDFs

PEGASUS A. Vogt '04; QCDNUM Botje '07 CANDIA Cafarella et al. '08; HOPPET Salam & Rojo '08

⇒ Description of PDFs reaching precision, but still some work ahead

Giulia Zanderighi

- precision in parton densities
- higher orders (LO, NLO, NNLO & resummations)
- jets: many new ideas, impressive level of sophistication
- ... [much more, I did not have time to mention]

Progress driven by

- automation/flexibility/public codes
- good communication with experimentalists & common papers

Still many challenges ahead but QCD theory will provide solid basis for a successful physics program at the LHC

LATTICE METHODS:

Rainer Sommer

The principle

First principle "solution" of QCD

experiments, hadrons

 $m_p = 938.272 \,\mathrm{MeV}$

 $M_{\pi} = 139.570 \, \mathrm{MeV}$

 $m_{\rm K} = 493.7 \,{
m MeV}$

 $m_{\rm D} = 1896 \, {\rm MeV}$

 $m_{\rm B} = 5279 \, {\rm MeV}$

- The Lagrangian
- Non-perturbative regulator: lattice with spacing *a*
- Technology

continuum limit $a \rightarrow 0$

fundamental parameters

& hadronic matrix elements

$$egin{aligned} lpha(\mu) \ m_{
m u}(\mu)\,,\,\,m_{
m s}(\mu) \ m_{
m c}(\mu)\,,\,\,m_{
m b}(\mu) \end{aligned}$$

$$F_{\mathrm{B}}$$
, $F_{\mathrm{B_{s}}}$, ξ ...

Rainer Sommer

Some sample results from the literature

Review of E. Gamiz lattice 2008

examples of results

```
m_{
m c}^{
m \overline{MS}}(3\,{
m GeV}) = 0.986(10)\,{
m GeV} HPQCD m_{
m b}^{
m \overline{MS}}(m_{
m b}) = 4.20(4)\,{
m GeV} HPQCD \xi = \frac{F_{
m B_s}\sqrt{m_{
m B_s}}}{F_{
m B}\sqrt{m_{
m B}}} = 1.211(38)(24) FNAL/MILC F_{
m B_s} = 243(11)\,{
m MeV} FNAL/MILC F_{
m D_s} = 241(3)\,{
m MeV} HPQCD
```

Precision up to 1% is claimed

Rainer Sommer

The challenge

multiple scale problem always difficult

for a numerical treatment

lattice cutoffs:

$$\Lambda_{\rm UV} = a^{-1}$$
 $\Lambda_{\rm IR} = L^{-1}$

$$L^{-1} \ll m_{\pi}, \ldots, m_{\rm D}, m_{\rm B} \ll a^{-1}$$
 $O(\mathrm{e}^{-LM_{\pi}})$ $m_{\rm D}a \lesssim 1/2$ \downarrow $L \gtrsim 4/M_{\pi} \sim 6 \,\mathrm{fm}$ $a \approx 0.05 \,\mathrm{fm}$

$$L/a \gtrsim 120$$

beauty not yet accomodated: effective theory, $\Lambda_{\rm QCD}/m_{\rm b}$ expansion

Perspectives:

Rainer Sommer

$N_{\rm f} = 2$ QCD: Coordinated Lattice Simulations

Teams

- * Berlin (team leader Ulli Wolff)
- * CERN (L. Giusti, M. Lüscher)
- * DESY-Zeuthen (Rainer Sommer)
- * Madrid (Carlos Pena)
- * Mainz(Hartmut Wittig)
- * Rome (Roberto Petronzio)
- * Valencia (Pilar Hernández)

Physics planned at present

- * Fundamental parameters up to $M_{\rm b}$
- * Pion interactions
- * Baryon physics
- * Kaon physics

also with mixed actions

$\overline{\beta}$	a [fm]	lattice	<i>L</i> [fm]	masses	
5.30	0.08	48×24^3	1.9	6 masses	CERN, Rome
5.30	0.08	64×32^3	2.6	6 masses	CERN, Rome
5.50	0.06	64×32^3	1.9	5 masses	DESY, Berlin, Madrid
5.70	0.04	96×48^3	1.9	2 masses	DESY,Berlin
5.70	0.04	128×64^3	2.6	2 masses	DESY,Berlin, started

Promising for charm (and beauty)

THE ELECTROWEAK SECTOR

Very good agreement with precision data

Fit Input

Martin Goebel

- usage of latest experimental results:
 - **Z-pole observables**: LEP/SLD results [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
 - M_W and Γ_W : LEP/Tevatron [ADLO, hep-ex/0612034] [CDF, Phys Rev. D77, 112001 (2008)] [CDF, Phys. Lett. 100, 071801 (2008)] [CDF+D0, Phys. Rev. D 70, 092008 (2004)]
 - m₊: Tevatron [arXivx:0808.1089 [hep-ex]]
 - $\Delta\alpha_{had}^{(5)}(M_Z^2)$: including α_S dependency [Hagiwara et al., Phys. Lett. B649, 173 (2007)]
 - m_c, m_b: world averages [PDG, J. Phys. G33,1 (2006)]
- theoretical uncertainties: M_W (δM_W =4-6GeV), $\sin^2 \theta^I_{eff}$ ($\delta \sin^2 \theta^I_{eff}$ =4.7·10⁻⁵)
- floating fit parameters: M_Z , M_H , m_t , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, $\alpha_S(M_Z^2)$, m_c , m_b
- fits are performed in two versions:
 - standard fit: all data except results from direct Higgs searches
 - complete fit: all data including results from direct Higgs searches at LEP [ADLO: Phys. Lett. B565, 61 (2003)] and Tevatron [CDF+D0: arXiv:0804.3423, CDF+D0: arXiv:0808.0534]

Parameter	Input value			
M_Z [GeV]	91.1875 ± 0.0021			
Γ_Z [GeV]	2.4952 ± 0.0023			
$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037			
R_{ℓ}^0	20.767 ± 0.025			
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010			
A_{ℓ} (*)	0.1499 ± 0.0018			
A_c	0.670 ± 0.027			
A_b	0.923 ± 0.020			
$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035			
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016			
R_c^0	0.1721 ± 0.0030			
R_b^0	0.21629 ± 0.00066			
$\sin^2 \theta_{\mathrm{eff}}^{\ell}(Q_{\mathrm{FB}})$	0.2324 ± 0.0012			
M_H [GeV] ($^{\circ}$)	Likelihood ratios			
M_W [GeV]	80.399 ± 0.025			
Γ_W [GeV]	2.098 ± 0.048			
\overline{m}_c [GeV]	1.25 ± 0.09			
\overline{m}_b [GeV]	4.20 ± 0.07			
m_t [GeV]	172.4 ± 1.2			
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \triangle)}$	2768 ± 22			
$\alpha_s(M_Z^2)$	_			
	† in units of 10 ⁻⁵			

Martin Goebel

Higgs Mass Constraints

- standard fit:
 - from MC toy: p-value=0.225±0.004_{-0.02}
 - Higgs mass
 - central value $\pm 1\sigma$: $M_H = 80^{+30}_{-23} \; GeV$
 - 2σ interval: [39, 155] GeV
 - 3σ interval: [26, 209] GeV
- green error band
 - theory uncertainties directly included in χ^2 ("flat likelihood")
- direct Higgs searches from LEP and Tevatron
 - resulting contribution added to the χ^2 during the fit

Pulls and Results for Complete Fit

Martin Goebel

- pull values of complete fit
 - no value exceeds 3σ
 - FB asymmetry of bottom quarks
 → largest contribution to χ²
- α_{s} from complete fit:

$$\alpha_{\rm S}({\rm M}_{\rm Z}^2) = 0.1193^{+0.0028}_{-0.0027} \pm 0.0001$$

- including N³LO of the massless QCD Adler function
- first error is experimental fit error
- second error due to missing QCD orders:
 - incl. variation of renorm. scale from M_Z/2 to 2M_Z and massless terms of order/beyond $\alpha_{\rm S}^{\rm 5}({\rm M_Z})$ and massive terms of order/beyond $\alpha_{\rm S}^{\rm 4}({\rm M_Z})$

There are a number of problems that the SM cannot resolve and requires NEW PHYSICS

- - No explanation of the flavor structure, including the existence of 3 generations
 - No Dark Matter candidate
 - No explanations for baryons
- No unification of strong and electroweak couplings
 - No unification with gravity

FLAVOR

- Solution to the flavor problem is finding a rationale for the structure of masses and mixing angles for quarks and leptons
- Normally it involves introducing a flavor symmetry under which flavor transforms and which breaks at some high scale leaving behind the flavor structure
- An example is the Froggatt-Nielsen mechanism with scalar fields coupled to Yukawa couplings as different powers according to quantum numbers

Puzzles of the electroweak sector

Matthias Neubert

• Unexplained hierarchies of fermion masses:

• Unexplained hierarchies of fermion mixings (e.g. quark sector):

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Beyond SM there is another problem of flavor ...

- Solutions to flavor problem explaining $\Lambda_{Higgs} << \Lambda_{flavor}$:
 - (i) $\Lambda_{\rm UV} >> 1~{\rm TeV}$: new particles too heavy to be discovered at LHC
 - (ii) $\Lambda_{\rm UV} \approx 1~{\rm TeV}$: quark flavor mixing protected by flavor symmetry

- The global symmetry can give rise to a discrete one
- Much simpler to find models based on discrete groups
- In the quark sector there is strong relation with B-physics:
- Amarijit Soni finds that several sizable effects in B CP asymmetries are better fitted with a 4th generation and t' and b' around 400-600 GeV and a heavy Higgs
- Aoife Bharucha presented a detailed calculation of the process $B \to K^* \mu^+ \mu^- \to K^- \pi^+ \mu^+ \mu^-$ that can probe SM and NP at LHC
- In the leptonic sector the knowledge of neutrino masses and neutrino mixing angles can well fit the tribi-maximal texture

Federica Bazzocchi

2008 Neutrinos & Lepton mixing

$$\begin{array}{lll} \Delta m^2_{sol} &=& 8.1(7.5-8.7)\cdot 10^{-5} \mathrm{eV}^2 \\ \Delta m^2_{atm} &=& 2.2(1.7-2.9)\cdot 10^{-3} \mathrm{eV}^2 \\ \sin^2\theta_{12} &=& 0.30(0.25-0.34) \\ \sin^2\theta_{23} &=& 0.50(0.38-0.64) \\ \sin^2\theta_{13} &=& 0(\leq 0.028) \longleftarrow \mbox{(? } \sin\theta_{13} \neq 0 \mbox{ see Palazzo's talk on friday)} \end{array}$$

M.Maltoni et al. New J.Phys.6:122,2004

$$\sin^2 \theta_{12} = 1/3, \sin^2 \theta_{23} = 1/2, \sin^2 \theta_{13} = 0$$

Federica Bazzocchi

Discrete flavor symmetries

@ LO exact TBM!

Ma & Rajasekaran PRD64, Ma PLB632 (2006). Hagerdon et al. JHEP 06 042 (S4)

- * even permutations of 4 objects (subgroup of S4, tethraedral symmetries)
- $\star 4!/2=12$ elements
- A4 *generated by two basic permutations: S=(4321) & T=(2314)
 - \star S²=T³= (ST)³=1 -> a representation of the group
 - ★12 elements belong to 4 equivalence classes
 - ★4 inequivalent representations 1,1',1" & 3

- \$4 permutations of 4 objects (tethraedral symmetries)
 \$\dpsi 4!=24 elements\$

 - \star S⁴=T³=1, ST²S=T -> a representation of the group
 - ★24 elements belong to 5 equivalence classes
 - ★5 inequivalent representations 1, 12, 2, 3, 32

Z₃ charged leptons

Z₂, Z₂xZ₂ neutrinos

$$G_{Z_3}^T M_l M_l^\dagger G_{Z_3} = M_l M_l^\dagger$$
 (or $G_{Z_3}^T M_l G_{Z_3} = M_l$)

$$G_{Z_2}^T M_{\nu} G_{Z_2} = M_{\nu}$$

 U_{Z_3}

$$U_{Z_2}$$

$$U_{lep} = U_{Z_3}^{\dagger} U_{Z_2} = U_{TB}$$

the group splits differently in charged lepton and neutrino sector not to get trivial mixing!

A4 for SU(5) constructed by Alfredo Urbano (YSF2)

Federica Bazzocchi

choose a basis for the A4,S4 generators in which the charged lepton are diagonal

neutrinos can get a mass in different ways

flavour symmetry

effective operator (EF)
$$\frac{1}{\Lambda}LLh_uh_u$$

$$\frac{1}{\Lambda} L L h_u h_u \frac{\phi_i}{\Lambda_F}$$

type I see-saw (SSI)
$$M_
u \sim -m_D\,M_R^{-1} m_D^T$$

$$m_D \sim Lh_u \nu^c \frac{\phi_i}{\Lambda_F}$$
$$M_R \sim \nu^c \nu^c \phi_i$$

type II see-saw (SSII)
$$LL\Phi$$

$$LL\Phi\frac{\phi_i}{\Lambda_F}$$

type III see-saw (SSIII)
$$M_{
u} \sim -m_{l\Sigma}\,M_{\Sigma}^{-1}m_{l\Sigma}^T$$

$$m_{l\Sigma} \sim Lh_u \Sigma \frac{\phi_i}{\Lambda_F}$$
 $M_{\Sigma} \sim \Sigma \Sigma \phi_i$

Comparing models: A4 Federica Bazzocchi

AF-EF

$$M_{\nu} = v \begin{pmatrix} a+2c & -c & -c \\ -c & 2c & a-c \\ -c & a-c & 2c \end{pmatrix}$$

MR the other in mD

$$M_{\nu} = v \begin{pmatrix} \frac{2}{3}a^2 + \frac{1}{3}b^2 & -\frac{1}{3}a^2 + \frac{1}{3}b^2 & -\frac{1}{3}a^2 + \frac{1}{3}b^2 \\ -\frac{1}{3}a^2 + \frac{1}{3}b^2 & \frac{1}{6}a^2 + \frac{1}{3}b^2 + \frac{1}{2}c^2 & \frac{1}{6}a^2 + \frac{1}{3}b^2 - \frac{1}{2}c^2 \\ -\frac{1}{3}a^2 + \frac{1}{3}b^2 & \frac{1}{6}a^2 + \frac{1}{3}b^2 - \frac{1}{2}c^2 & \frac{1}{6}a^2 + \frac{1}{3}b^2 + \frac{1}{2}c^2 \end{pmatrix}$$

SUPERSYMMETRY

- Supersymmetry is the simplest and more elegant solution to the hierarchy problem: quadratic divergences generated by bosons are canceled by fermions
- In its minimal version (MSSM) the SM-like Higgs mass is very strongly bound and then the theory can be ruled out at the LHC
- In the MSSM there is a natural candidate for CDM: the lightest neutralino provided R-parity is conserved
- Gauge coupling unification happens without imposing it
- Radiative electroweak breaking is a nice feature of minimal SUGRA
- The stability/triviality problem of the SM are naturally solved by the relation between quartic and gauge coupling

Gauge coupling unification

Consistently with LEP measurements and if superparticles are at \sim TeV scale gauge couplings unify at a scale $M_{GUT} \sim 2 \times 10^{16} \text{ GeV}$

Stability/triviality problems

The stability (λ < 0) and triviality/Landau pole (λ → ∞) problems are solved because of the supersymmetric relation

$$\lambda = \frac{1}{8}(g^2 + g'^2)$$

- Because the gauge couplings remain perturbative (and positive) up to M_{GUT} there is no stability and/or triviality problem in the MSSM
- As a consequence: the Higgs mass (unlike in the SM) is NOT a free parameter. For the SM-like Higgs

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3G_F m_t^4}{\sqrt{2}\pi^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{M_S^2} \left(1 - \frac{A_t^2}{12M_S^2} \right) \right]$$

► The Higgs mass is a prediction in a supersymmetric theory ⇒ theoretical constraints

Electroweak breaking

If soft breaking parameters are generated at M_{GUT} a tachyonic mass can be triggered by RGE at the weak scale

 m_h Vs. M_{SUSY} [$m_A \sim 1$ TeV, (a,b) $\tan \beta = 15$ $A_t/M_{SUSY} = (\sqrt{6}, 0)$; (c,d) $\tan \beta = 2$]

- The key problem in supersymmetric theories is the generation of soft breaking terms: gravity mediation, gauge mediation, gaugino mediation, anomaly mediation
- In general supersymmetry suffers from the so-called supersymmetric flavor problem: if there is a mismatch between quark and squark diagonalization

Andreas Crivellin

SUSY flavour problem

- Squark mass matrices are not necessarily diagonal in the same basis as the quark mass matrices
- Quark-squark-gluino vertex is flavour-changing in general

Dangerously large flavour-mixing in FCNC processes involving the strong coupling constant.

Andreas Crivellin

Flavour-changing self energy:

Mass insertion approximation

$$\Sigma(0)_{\mathrm{fi}}^{\mathrm{q}} = g_{\mathrm{s}}^{2} \frac{m_{\tilde{\mathrm{g}}}}{6\pi^{2}} \left(\Delta_{\mathrm{fi}}^{\tilde{\mathrm{q}}\mathrm{LR}} P_{\mathrm{R}} + \Delta_{\mathrm{fi}}^{\tilde{\mathrm{q}}\mathrm{RL}} P_{\mathrm{L}} \right) C_{0} \left(m_{\tilde{\mathrm{g}}}^{2}, M_{\mathrm{fA}}^{\tilde{\mathrm{q}}}, M_{\mathrm{iB}}^{\tilde{\mathrm{q}}} \right)$$

Exact diagonalization

dimensonless

$$\Sigma \left(0\right)_{\rm fi}^{\rm q} = g_{\rm s}^{\ 2} \, \frac{m_{\tilde{\rm g}}}{6\pi^2} \sum_{\rm s=1}^{6} \left(\left(V_{\rm RL}^{\rm s}\right)_{\rm fi} \, P_{\rm R} + \left(V_{\rm LR}^{\rm s}\right)_{\rm fi} \, P_{\rm L} \right) B_0 \left(m_{\tilde{\rm g}}^{\ 2}, m_{\rm q_s}^{\ 2}\right) \right) \, {\rm with} \, . \label{eq:sigma}$$

$$\left(V_{LR}^{s}\right)_{fi} \equiv \sum_{j,k=1}^{6} U_{jf}^{qL*} W_{js}^{\tilde{q}} U_{ki}^{qR} W_{k+3,s}^{\tilde{q}}^{**}, \quad \left(V_{RL}^{s}\right)_{fi} \equiv \sum_{j,k=1}^{6} U_{jf}^{qR*} W_{j+3,s}^{\tilde{q}} U_{ki}^{qL} W_{ks}^{\tilde{q}*} \longrightarrow \begin{cases} \sum(0) \sim M_{SUSY} \\ \text{for constant } \delta \end{cases}$$

Andreas Crivellin

Results and comparison

quantity	our bound	bound f	from FCNC	bound from vacuum stability
$\delta_{\scriptscriptstyle 12}^{\scriptscriptstyle dLR}$	0.0011	0.006,	K mixing	0.00015
$\delta_{13}^{ ext{d LR}}$	0.001	0.15,	B _d mixing	0.005
$\delta_{23}^{ m dLR}$	0.01	0.06,	b→sγ	0.05
$\delta_{13}^{d LL}$	0.032	0.5,	B _d mixing	
$\delta_{\scriptscriptstyle 12}^{\scriptscriptstyle m uLR}$	0.0047	0.016,	D mixing	0.0012
$\delta_{13}^{\mathrm{uLR}}$	0.027			0.22
δ_{23}^{uLR}	0.27			0.22

Bounds calculated with m_{squark}=m_{gluino}=1000GeV

Gudrun Hiller

Too many parameters: a simplification is Minimal Flavor Violation

What does MFV imply for SUSY? Simplification!

* The superpotential (N=1, unbroken R-parity) is MFV!

$$W_{MSSM} = QY_uH_uU + QY_dH_dD + LY_eH_dE + \mu H_dH_u$$

* SUSY-breaking with MFV-generational structure:

$$\tilde{Q}^{\dagger}\tilde{m}_{Q}^{2}\tilde{Q} + \tilde{U}^{\dagger}\tilde{m}_{U}^{2}\tilde{U} + \tilde{D}^{\dagger}\tilde{m}_{D}^{2}\tilde{D} + (A_{u}\tilde{Q}H_{u}\tilde{U}^{*} + A_{d}\tilde{Q}H_{d}\tilde{D}^{*} + h.c.)$$

$$\tilde{m}_Q^2 = \tilde{m}^2 (a_1 \mathbf{1} + b_1 Y_u Y_u^{\dagger} + b_2 Y_d Y_d^{\dagger})$$

$$\tilde{m}_U^2 = \tilde{m}^2 (a_2 \mathbf{1} + b_5 Y_u^{\dagger} Y_u)$$

$$\tilde{m}_D^2 = \tilde{m}^2 (a_3 \mathbf{1} + b_6 Y_d^{\dagger} Y_d)$$

$$A_u = A(a_4\mathbf{1} + b_7Y_dY_d^{\dagger})Y_u$$

$$A_d = A(a_5 \mathbf{1} + b_8 Y_u Y_u^{\dagger}) Y_d$$

 $b_i \equiv 0$: SUSY breaking is flavor blind

Gudrun Hiller

MFV Predictions for the MSSM

* Highly degenerate squarks of 1st and 2nd generation:

$$\Delta m/m_0 \sim \lambda_c^2/2; \quad \Delta m < 1 \text{ GeV}$$

* 3rd generation decoupled (via V_{CKM}).

Marco Nardecchia (YSFI)

Another simplification: 1st and 2nd generations heavy

Hierarchical Soft Terms

In the Hierarchical scenario the LL and RR soft terms have the following structure:

$$\tilde{m}^2 = \begin{pmatrix} h_{11} & h_{12} & a_1 \\ h_{21} & h_{22} & a_2 \\ \bar{a}_1 & \bar{a}_2 & l_3 \end{pmatrix}$$

Where the "h" block is heavy and the remaining entries are much lighter.

The first two families can be naturally

heavier with respect to the 3rd one.

Motivations:

- Complementary to degenerate assumption
- If we start with a degenerate condition at very high energy, we end up to a split situation at low energy because of the Yukawa coupling of the 3rd family
- Welcome to alleviate SUSY flavor problem

$$A(\Delta F=1)=f(x)\hat{\delta}_{ij} \qquad x=\frac{\tilde{m}_3^2}{M^2} \qquad \qquad \hat{\delta}_{ds}^{LL}\equiv \hat{\delta}_{db}^{LL}\hat{\delta}_{bs}^{LL} \qquad \qquad Suppression in the 1-2 sector \qquad \qquad Suppression in the 1-2 sector \qquad Suppression in the 1-2 se$$

There are only 4 flavor violating insertions: $\hat{\delta}_{bd}^{LL}$, $\hat{\delta}_{bd}^{LL}$, $\hat{\delta}_{bd}^{RR}$, $\hat{\delta}_{bd}^{RR}$

WARPED EXTRA DIMENSIONS

• It is a solution to the hierarchy problem that involves gravity: it was proposed by Randall and Sundrum

The Randall-Sundrum (RS) idea

Matthias Neubert

brane

Hierarchies from geometry: RS model*

ultra-violet (UV) brane

$$V_{\rm UV} = -\frac{\Lambda}{k}$$

Slice of AdS₅ with curvature *k*:

warp factor

(solution to Einstein's equations)

$$ds^2 = e^{-2\sigma} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - r^2 d\phi^2, \quad \sigma = kr|\phi|$$

$$\epsilon = \frac{M_W}{M_{\rm Pl}} = e^{-kr\pi} \approx 10^{-16} \,, \quad L = -\ln\epsilon \approx 37 \,, \quad M_{\rm KK} = k\epsilon = {\rm few \, TeV}$$

Hierarchies from geometry: RS model

Pattern of gauge-symmetry breaking:

- ▶ bulk gauge group $SU(2)_L \times U(1)_Y$ broken by IR brane-localized Higgs to $U(1)_{EM}$
- more complicated patterns (with custodial symmetry) also considered in literature*

*Agashe, Delgado, May, Sundrum, hep-ph/0308036; Agashe, Contino, Da Rold, Pomarol, hep-ph/0605341

RS model: Gauge boson profiles*

Profiles of gauge fields:

while profiles of photon and gluon are flat, wave functions of heavy gauge bosons and KK modes are peaked near IR brane

$$\chi_{g,\gamma}(\phi) = \frac{1}{\sqrt{2\pi}}, \quad \chi_{W,Z}(\phi) \approx \frac{1}{\sqrt{2\pi}} \left[1 + \frac{m_{W,Z}^2}{M_{KK}^2} \left(1 - \frac{1}{L} + t^2 \left(1 - 2L - 2 \ln t \right) \right) \right]$$

RS setup allows a "theory of flavor"

RS model: Fermion profiles*

Matthias Neubert

Profiles of fermion fields:

- localization of fermion profiles in extra dimension controlled by bulk mass parameters $c_{Q,q} = \pm M_{Q,q}/k$
- top quark lives in IR to generate its large mass, while light fermions live in UV

Matthias Neubert

Quark masses and mixings in RS model*

Scaling laws:

$$m_{q_i} = \mathcal{O}(1) \frac{v}{\sqrt{2}} F_{c_{Q_i}} F_{c_{q_i}}$$

$$\lambda = \mathcal{O}(1) \frac{F_{c_{Q_1}}}{F_{c_{Q_2}}}$$

$$A = \mathcal{O}(1) \frac{F_{c_{Q_2}}^3}{F_{c_{Q_1}}^2 F_{c_{Q_3}}}$$

$$\bar{\rho} - i\bar{\eta} = \mathcal{O}(1)$$

$$c_{Q_1} = -0.579$$
, $c_{Q_2} = -0.517$, $c_{Q_3} = -0.473$
 $c_{u_1} = -0.742$, $c_{u_2} = -0.558$, $c_{u_3} = +0.339$
 $c_{d_1} = -0.711$, $c_{d_2} = -0.666$, $c_{d_3} = -0.553$

(+ anarchic Yukawa matrices)

• Hierarchy in quark masses and mixings can be naturally generated from anarchic complex 3×3 matrices $Y_q = \mathcal{O}(1)$ entering $Y_q^{\text{eff}} = F_{cQ_i}(Y_q)_{ij} F_{cq_i}$

Matthias Neubert

Warped-space Froggatt-Nielsen mechanism*

Bulk fermions in RS:

$$(Y_q^{\text{eff,RS}})_{ij} \propto (Y_q)_{ij} e^{-kr\pi(c_{Q_i}-c_{q_j})}$$

- bulk parameter c_{Q_i,q_i}
- warp factor $\epsilon = e^{-kr\pi}$

Froggatt-Nielsen (FN) symmetry:

$$(Y_q^{\mathrm{eff,FN}})_{ij} \propto (Y_q)_{ij} \, \epsilon^{a_{Q_i} - b_{q_j}}$$

- $U(1)_F$ charges $Q_F = a_{Q_i}, b_{q_j}$
- model parameter $\epsilon \ll 1$ set by VEVs
- Models with warped spatial extra dimension provide compelling geometrical interpretation of flavor symmetry

RS is a **theory** of flavor!

(to a good extent)

Mixing matrices: Scaling relations

Matthias Neubert

In all cases one finds:

$$(\Delta_{Q}^{(\prime)})_{ij} \sim F_{c_{Q_{i}}} F_{c_{Q_{j}}}, \qquad (\delta_{Q})_{ij} \sim \frac{m_{q_{i}} m_{q_{j}}}{M_{KK}^{2}} \frac{1}{F_{c_{q_{i}}} F_{c_{q_{j}}}} \sim \frac{v^{2} Y_{q}^{2}}{M_{KK}^{2}} F_{c_{q_{i}}} F_{c_{q_{j}}},$$

$$(\Delta_{q}^{(\prime)})_{ij} \sim F_{c_{q_{i}}} F_{c_{q_{j}}}, \qquad (\delta_{q})_{ij} \sim \frac{m_{q_{i}} m_{q_{j}}}{M_{KK}^{2}} \frac{1}{F_{c_{Q_{i}}} F_{c_{Q_{j}}}} \sim \frac{v^{2} Y_{q}^{2}}{M_{KK}^{2}} F_{c_{Q_{i}}} F_{c_{Q_{j}}}$$

Implications of scaling relations:

- all effects are proportional to $F_{c_{A_i}}F_{c_{A_j}}$, so that all flavor-violating vertices involving light, UV-localized fermions are suppressed
- ▶ this suppression of dangerous FCNCs involving light quarks reflects the RS-GIM mechanism

 Flavor-changing tree-level transitions of K and B_s mesons particularly interesting as their sensitivity to KK scale extends beyond LHC reach

DARK MATTER

$$\Omega_{DM}h^2 = 0.105(8)$$

The most popular candidate is a neutral stable weakly interacting massive particle (WIMP)

The WIMP S annihilates and its particle density obeys the Boltzmann equation

$$\frac{dn_S}{dt} = -3Hn_S - \langle \sigma_{\rm ann} v \rangle (n_S^2 - n_{S,eq}^2)$$

$$n_{S,eq} = T^3 \left(\frac{M_S}{2\pi T} \right)^{3/2} e^{-M_S/T}$$
 Equilibrium distribution

$$f = n/T^3$$

$$\frac{df_S}{dT} = \frac{\langle \sigma_{\rm ann} v \rangle}{H/T^2} (f_S^2 - f_{S,eq}^2)$$

An approximate solution

$$\frac{M_S}{\hat{T}} = \log \left(\frac{M_S \langle \sigma_{\rm ann} v \rangle}{H/\hat{T}^2} \right) + \frac{1}{2} \log \left(\frac{8\pi^3 \hat{T}}{M_S} \right)$$
 Freeze out temp.

$$f(T \ll M_S) \approx \frac{H/\hat{T}^2}{\hat{T} \langle \sigma_{\rm ann} v \rangle}$$
 Final particle density

Total energy density of WIMPS at present $T=T_{\gamma}$

$$\Omega_{DM} = rac{2}{g_*} rac{M_S n_S(T_\gamma)}{
ho_{
m crit}} = rac{2}{g_*} rac{H/T^2}{\hat{T} \left\langle \sigma_{
m ann} v \right
angle} rac{M_S T_\gamma^3}{
ho_{crit}}$$

- Direct searches: elastic scattering of DM off nuclei in a low background detector (recoil energy of nucleus)
- Indirect searches: signals due to DM annihilation in Sun, Earth, where it has been captured and accumulated and in the Galactic Halo

It is relatively easy to have candidates for DM satisfying the energy density constraint

Some possibilities studied by Fu-Sin Ling

- Singlet coupled to the Higgs (simplest)
- Inert doublet (Higgs with no VEV)

Pure gauge limit

With quartic couplings

 $m_{H_0} = 600, 1000, 3000 \text{ GeV}$

 Constraints on solar system DM has been pointed out in the talks of Stephen Adler and Annika Peter

. SOLAR SYSTEM- BOUND DARK MATTER?

Stephen Adler

FROM STORY OF PLANETARY ORBITS -

FRERE, LING & VERTONGEN

SERENG & JETZER

IORIO

KRRIPLOVICH & PITTEVA

0 < 10 GeV/ C2 cm3

COULD PRODUCE A DAILY (SIDEREAL TIME)

MODULATION IN DAMA/ LIBRA + 24 HOUR PERIOD

EARTH (PLANST - ROUND) DARK MATTER ?

DENSITY WOOLD BE

10 - 6 x 10 6 0 V / C2 CM >> PHOLO

Stephen Adler

CONSTRAINTS 3

- . DARK MATTER LOCALIZED WELL WITHIN MOON ORAIT AND NOT TOO NEAR EARTH
- . DARK MATTER MASS CE GOV
- · 500-10 WIGH: 10 83 cm2 TO 10 cm2
- DARK MATTER NON SELF ANNINILATING
 AND STABLE IN ABSENCE OF NUCLEONS

POSSIBLE APPLICATIONS OF EARTH AND PLANET-BOUND DARK MATTER (SPECULATIVE!)

Stephen Adler

. JOVIAN PLANET ANOMALIES

[ADLEA PHYS. LETT. 8 671 (2009) 203

AKXIV: 0808. 2823

SURFACE HEAT FLUX H CM'S PLANET (de later

Sero

Surface Heat Flux H Cm's Planet (de later

Lissauer)

Saturn

CA2

URANOS

NEPTONE

- (PEQUIRES LOW ENERGY RELEASE EFFICIENCY)
- (2) URANUS AXIS ON ITS SIDE RELATIVE TO ECLIPTIC COLLISION CAUSING THIS COULD HAVE KNOCKED URANUS
 OUT OF ITS DAKK MATTER CLOUD

Stephen Adler

The

Dynamics of dark matter bound to the solar system

(and why it matters for indirect detection)

has been studied by Annika Peter who focussed on standard WIMPs

Indirect Detection of Dark Matter in the Solar System

- ν's in the Sun
- ν's from the Earth
- γ 's outside the Sun (if time)

all of these probes depend on what happens to the dark matter after it becomes bound to the solar system!

Suppression of the Annihilation Rate

(Standard Halo Model)

Neutrinos from WIMPs in the Sun

Annika Peter

If m $_{\chi}$ > 1 TeV and $\sigma_p^{SD}\lesssim$ 10⁻³⁸ cm², \varGamma will be heavily suppressed

One Huge Astrophysical Systematic: The Dark Disk Annika Peter

- Standard Halo Model (approximate multivariate Gaussian, $\sigma \approx v_{\odot}/2^{1/2}$) based on N-body simulations of dark matter-only galaxies.
- Simulations that include baryons show that the stellar disk drags satellites into the disk plane, where they dissolve.
- This yields a DARK DISK with properties similar to the stellar disk generated by these satellites.
- The dark disk properties are extremely sensitive to the merger history of the Galaxy.
- Typically, speeds wrt to the solar system are MUCH smaller-much easier to capture.

(Read et al. 2008, 2009)

Annika Peter

Conclusion

- Indirect detection of WIMPs in the solar system depends sensitively on the bound orbits.
- ν's from WIMPs in the Sun: suppression in the annihilation rate for m_χ ≥ 1 TeV (this is insensitive to the presence of extra planets). The event rate may be boosted by a factor of ~ 10 for the dark disk.
- ν's from the Earth: for the Standard Halo Model alone, no signal in IceCube. The dark disk boosts the signal by ~ 1000x
 may be observable! Signal sensitive to inner planets.

Question: is the PAMELA positron excess from DM?

This question was dealt with in a DM independent way Marco Cirelli

Positron fraction: CR background Timur Delahaye

The background is an important issue

Are we seeing Dark Matter in cosmic rays?

I don't know, I fear it's unlikely

Marco Cirelli

Another possibility for explaining the PAMELA/ATIC positron excess is an astrophysical origin: Tsvi Piran

SNR are the canonical sources of CRs

A new source of electrons & positrions that becomes dominant at ~10 GeV

Consider a Local Source of CR electrons

 Above E_b ~ 20 GeV, the electrons will start cooling and disappear. Tsvi Piran

- Positrons however, form continousely along the way from proton-ISM interactions.
- Therefore the positron/electron ratio will increase

- Primary electron cool and disappear before reaching earth
- Secondary electron/positron form nearer and can reach earth before cooling

The source can be SNR in spiral arm

In the Milky Way: Almost all SNe are non-Type Ia, and occur where almost all star formation takes place: In the Spiral Arms Contribution from nearby KNOWN young SNRs: Geminga, Monogem, Gela Loopl and Cygnus Loop

Tsvi Piran

A very general comparison with recent DM experiments Kathryn Zurek

- PAMELA and ATIC electron/positron excesses
 - This morning's talks
- ❖ 511 keV line
 - No time
- * DAMA
 - Focus of this talk
- ❖ None suggest ordinary SUSY WIMP DM
- Suggest that DM dynamics may be more complex

Non-standard requirements of PAMELA/ATIC

- Not an ordinary WIMP
- * Non-standard annihilation modes $\rightarrow W^+W^-, \bar{b}b, \tau^+\tau^-$
- Non-standard annihilation cross-section

 $B\langle\sigma_{ann}v\rangle \simeq 10^{-23} \text{ cm}^3/\text{s}$

 Anti-protons--would expect an excess

Complex dark sectors

Weak scale states Higgs, Z', MSSM states

Standard Model

Oark forces

Date

D

"Hidden valley"

Dark sector

- * Multiple stable states?
- * New light forces?

DAMA and WIMP DM

* New unaccounted for (?) systematic which shifts the threshold: channeling

Only has small fraction of the recoil goes into a mode that DAMA measures. The rest goes into phonons/heat

Spectral information

Energy	$S_i^1 \text{ (cpd/kg/keVee)}$
2-4 keVee	0.0223 ± 0.0027
2-5 keVee	0.0178 ± 0.0020
2-6 keVee	0.0131 ± 0.0016
6-14 keVee	0.0009 ± 0.0011

Window is not ruled out

DAMA results has inspired low threshold analyses in other experiments, e.g. CDMS and XENON

Savage, Freese, Gondolo, Spolyar

Simple realizations of this solution

Experimentally, $\Omega_{DM} \approx 5\Omega_b$

Find mechanism $n_{DM} \approx n_b$

 $m_{DM} \approx 5m_p$

S.M. Barr, D.B. Kaplan

Farrar, Zaharijas Kitano, Low Gudnason, Kouvaris, Sannino Kitano, Murayam, Ratz Luty, Kaplan, KZ

Standard Model

X sector

The issue of explaining DAMA results with scalar DM was also addressed by Sarah Andreas (YSF3)

A "theory" of DM is built by Martti Raidal

- Assume that the initial space-time topology is effectively lower dimensional, e.g., M³ × S¹ with very small compact space dimension.
- Formulate physics theories consistently in 3-dimensions and lift the result to 4 dimensions.
- Take care of CPT and Lorentz invariance violating effects (photon mass, S¹ must be big)
- Use new constraints in 4-dimensional model building

- In 3 dimensions non-Abelian gauge and gravity actions have topological Chern-Simons terms which charges are quantized
- The presence on N_F chiral fermions and N_G gauge bosons induce loop corrections to the actions and the quantization conditions require

$$\frac{1}{16}N_F - \frac{1}{8}N_G = 0$$

- Chiral fermions must come in multiples of 16 and there mus odd number of generations
- Experiment: 15 SM fermions + N fit 16 of SO(10), there are generations
- Number of gauge bosons is $N_G = N_F/2 = 24$
- 24 is an adjoint of SU(5), thus less-dimensions suggest SU(5 GUT and

$$SO(10) \rightarrow SU(5) \times U(1)_X$$

- If all matter fields come in some representation of SO(10), the U(1) quantum numbers of all of them are well defined
- The U(1)_X is the origin of a discrete Z_n symmetry needed for DM.

$$P_X \equiv P_M = (-1)^{3(B-L)},$$

- Our scenario generalizes matter parity to non-SUSY models
- Matter parity P_M is an intrinsic property of all matter

Martti Raidal

BARYOGENESIS

$$n_B/n_{\gamma} = 6.12(19) \times 10^{-10}$$

The conditions for baryogenesis were stated by Sakharov in 1967 [A.D. Sakharov, JETPL 91B (1967) 24]

- B violation
- C and CP violation
- Departure from thermal equilibrium

All these conditions are fulfilled in the SM

- Baryon number is non-perturbatively violated in the SM: sphalerons at finite temperature
- C and CP violating phases (CKM) are present
- The out-of-equilibrium conditions are present in the bubble walls in a FIRST ORDER PHASE TRANSITION

A mechanism for the generation of the BAU was suggested by Cohen, Kaplan and Nelson in 1993 using CP violating interactions of fermions with the domain wall of a bubble. The reflection and transmission coefficients of fermions and anti-fermions scattering off the CP violating wall are different

Although the SM contains all the ingredients for EWBG it fails quantitatively because

 The CP violation provided by the CKM phase is too small to generate the required BAU

 $v(T_c)/T_c$ as a function of m_H (in GeV) [one-loop]

The phase transition is too weak

LEPTOGENESIS

• Leptogenesis generates $\Delta L \neq 0$

• Sphalerons
$$\Delta L = \Delta B$$
 $\Delta B \neq 0$

If right handed neutrinos exist they can do the job

$$\mathcal{L}_N = M_\alpha N_\alpha N_\alpha + \lambda_{\alpha i} N_\alpha L_i \phi$$

- 1. It is impossible to assign a lepton number to the N_{α} 's in such a way that \mathcal{L}_{N} is L-conserving: The M-terms require L(N) = 0 while the λ -terms require L(N) = -1. Thus, \mathcal{L}_{N} breaks L and (since it does not break B) B L.
- 2. We can choose the phases of the N_{α} fields in a way that makes M real, but then λ will have physical, irremovable phases. Thus \mathcal{L}_N violates CP.
- 3. The Lagrangian \mathcal{L}_N allows for N decays via $N \to L\phi$. If, however, the Yukawa couplings are small enough, the N-decays occur out of equilibrium.

The Majorana nature of the right-handed neutrino means that any single mass eigenstate can decay both

 $L\Phi, \bar{L}\phi$

CP is violated in these decays and CP asymmetry

$$\epsilon_{N_{\alpha}} = \frac{\Gamma(N_{\alpha} \to \ell H) - \Gamma(N_{\alpha} \to \bar{\ell} \bar{H})}{\Gamma(N_{\alpha} \to \ell H) + \Gamma(N_{\alpha} \to \bar{\ell} \bar{H})}$$

Leptogenesis In Greater Depth

The see-saw model adds to the Standard Model —

The Yukawa couplings y_{ik} cause —

$$N_k \rightarrow \ell_j^{\mp} + \varphi^{\pm}$$
 and $N_k \rightarrow \overline{v_j} + \overline{\varphi^0}$.

Then, summing over the final lepton flavors, the **CP** asymmetry is —

$$\varepsilon = \frac{\Gamma(N_1 \to L\phi) - \Gamma(N_1 \to \overline{L}\overline{\phi})}{\Gamma(N_1 \to L\phi) + \Gamma(N_1 \to \overline{L}\overline{\phi})}$$

$$= \frac{1}{8\pi} \frac{1}{(y^{\dagger}y)_{11}} \sum_{m} \Im \left[\{ (y^{\dagger}y)_{1m} \}^2 \right] K \left(\frac{M_m^2}{M_1^2} \right)$$

$$\varepsilon \sim y^2/10$$
Kinematical function

To explain $n_B/n_{\gamma} \sim 10^{-9}$ requires $\varepsilon \sim 10^{-6}$.

$$M_v \sim M_D^2/M_N \sim (yv)^2/M_N \sim 10^{-1} \text{eV}$$
.

For leptogenesis, we required that — Boris Kayser

$$\varepsilon \sim y^2/10 \sim 10^{-6}$$

Together, these requirements imply that —

$$M_N \sim 10^9 \, \text{GeV}$$
.

Leptogenesis requires very heavy neutrinos, far beyond the range of LHC.

Electromagnetic Leptogenesis

(Nicole Bell, B.K., Sandy Law)

Suppose new physics at a high mass scale $\Lambda > M_N$ leads to the electromagnetic N decay mode —

$$N \rightarrow v + \gamma$$
 Toy Model

Boris Kayser

or the mode —

$$N \to L + \varphi + (\gamma \text{ or } Z \text{ or } W)$$

Emitted in standard leptogenesis

More realistic; respects SM conservation laws

Could In such decays be a successful alternative to the standard leptogenesis scenario?

Q: If so, could it be successful if $M_N \sim 1$ TeV, within range of the LHC, instead of $\sim 10^9$ GeV?

The N $\rightarrow v + \gamma$ Toy Model

An example of tree-loop interference:

$$N_k \rightarrow \begin{array}{c} \lambda_{jk} \\ \lambda_{jk} \\ \gamma \end{array} + N_k \rightarrow \begin{array}{c} \lambda_{nk}^* \lambda_{nm} \\ \overline{\nu}_n \end{array} \begin{array}{c} \nu_j \\ \overline{\nu}_n \end{array}$$

$$\Gamma(N_k \to \nu_j + \gamma) - \Gamma(N_k \to \overline{\nu_j} + \gamma) \propto \Im(\lambda_{jk}^* \lambda_{nk}^* \lambda_{nm} \lambda_{jm})$$

This model leads to a $\mathcal{L}P$ asymmetry ε rather similar to the one from standard leptogenesis, with $y \Rightarrow \lambda$.

The \mathcal{L}^{p} phases are now in λ .

EM leptogenesis can succeed.

Our Two Questions

Could P in EM decays be a successful alternative to the standard leptogenesis scenario?

A: Yes.

Q: If so, could it be successful if $M_N \sim 1$ TeV, within range of the LHC, instead of $\sim 10^9$ GeV?

No. Boris Kayser

The problem "Can LHC disprove Leptogenesis?" has been reconsidered by Gilles Vertongen

TESTING LEPTOGENESIS

Observing N_R?

1. Hierarchical N_R Leptogenesis ok if $m(N_R) > 10^8 \text{ GeV}$

[Davidson-Ibarra, 2002]

2. Degenerate N_R Leptogenesis ok @ low scales [Pilaftsis, 2002]

but $m(v_{\alpha})$ require λ suppressed

If not testable, could leptogenesis at least be falsified?

LEPTOGENESIS IN GAUGE FRAMEWORK

Proposition:

Gilles Vertongen

The observation of W_R @ LHC would disprove Leptogenesis

Why a W_R?

1. Majorana neutrinos are *naturally* present in Grand Unified Theories:

$$SO(10) \rightarrow ...$$

$$\rightarrow SU(3)_{C} \times SU(2)_{R} \times SU(2)_{L} \times U(1)_{Y}$$

$$\rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$$

Left-Right Sym. Model

New gauge fields: W_R

$$\mathcal{L} \ni \frac{g}{\sqrt{2}} W_R^{\mu} \left(\bar{u}_R \gamma_{\mu} d_R + \bar{N} \gamma_{\mu} l_R \right)$$

- 2. LHC arrival!
 - 2. Tevatron fixed $m(W_R) > 800 \text{ GeV}$ [CDF Collaboration, note 8747 (2007)]
 - 3. LHC will probe $m(W_R) < 3-4$ TeV [CERN-LHCC-2006-021]

Gilles Vertongen

EFFECTS OF A LOW SCALE WR

Decays	Diagrams	CP Violation	Efficiency
Yukawa	N_R	$ \widehat{\varepsilon_{CP}^{(0)}} \equiv \frac{\Gamma_{N o LH} - \overline{\Gamma}_{N o ar{L}H^*}}{\Gamma_{\mathrm{tot}}^{(l)}} $ "Average \triangle L produced per decay"	$\eta \leq 1$
Gauge	$ar{D}_R$ $ar{V}_R$ $ar{V}_R$ $ar{V}_R$ $ar{V}_R$ $ar{V}_R$ $ar{V}_R$ $ar{V}_R$	$arepsilon_{CP} = rac{\Gamma - \overline{\Gamma}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}} rac{ ext{Dilution}}{ ext{Dilution}}$ $= rac{\Gamma - \overline{\Gamma}}{\Gamma_{ ext{tot}}^{(l)}} rac{\Gamma_{ ext{tot}}^{(l)}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}}$	$\eta \leq \frac{\Gamma_{ ext{tot}}^{(l)}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}}$

Strong Thermalization

- ⇒ Easier to produce neutrinos @ Reheating
- ⇒ Harder decoupling @ Low T° (Washout)

Gilles Vertongen

INCLUSION IN BOLTZMANN EQUATIONS

EXA	MPLE OF GAUGE	EFFE	ECTS
m(N)	= $500 \text{ GeV} \text{m(W}_R) = 3 \text{ TeV}$	λ = 10)-3 eV
Case	Content	η	YB
(a)	Standard Leptogenesis	0,5	6.10-4
(b)	(a)+W _R decays in Y _N	3.10-8	4.10-11
(c)	(b)+W _R scatterings in Y _N	2.10-10	2.10-13
(d)	$(c)+W_R$ scatterings in Y_L	2.10-18	2.10-21
(e)	(d)+W _R decays in Y _L	2.10-18	2.10-21

Type I Leptogenesis

- could be disproved if W_R observed @ LHC
- \rightarrow could work if m(W_R) > 18 TeV

Another model for TeV Leptogenesis has been considered by Yuji Kajiyama where it is Higgs mediated

Yuji Kajiyama

to avoid resonance condition...

•In this talk, we consider leptogenesis by

$$\epsilon \sim \frac{1}{16\pi} \frac{{\rm Im}[AB^*]C}{|A|^2}$$
 can be large if $A \sim B \sim 10^{-6}$

We discuss:

- (1) leptogenesis below EWSB scale $(T < T_c)$ without resonance condition,
- (2) source of CPV is in the Higgs sector.

2. The Model

K.S.Babu and S.Nandi, Phys.Rev.D62,033002(2000)

G.F.Giudice and O.Lebedev, Phys.Lett.B665,79(2008)

•Consider a Froggatt-Nielsen type model by Higgs doublets with U(1) charge assignment

$$H_u:0,\ H_d:1,\ L_i:-3,\ N_{Ri}:0$$

Yuji Kajiyama

U(1) invariant Yukawa terms are given by

$$\mathcal{L}_{\nu} = y_{ij}^{\nu} \bar{N}_{Ri} L_{Lj} H_u \left(\frac{H_u H_d}{M^2} \right)^{n_{ij}^{\nu}} + \frac{1}{2} N_{Ri} M_{Nij} N_{Rj} + c.c.$$

where
$$\left(n_{ij}^{\nu}\right)=3$$
. Mass hierarchy: $\left(\frac{v_uv_d}{M^2}\right)^{n_{ij}}\equiv\epsilon^{n_{ij}}=10^{-2n_{ij}}$

$$y^{\nu} \sim \mathcal{O}(1)$$
 and real, $M \sim 1 \text{TeV}$.

·Higgs potential is given by

$$V = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + \lambda_1 |H_u|^4 + \lambda_2 |H_d|^4 + \lambda_3 |H_u|^2 |H_d|^2 + \lambda_4 |H_uH_d|^2 + \left[m^2 H_u H_d + \lambda_5 (H_u H_d)^2 + \lambda_6 |H_u|^2 H_u H_d + \lambda_7 |H_d|^2 H_u H_d + c.c. \right]$$

Source of CPV $(m^2, \lambda \text{ are complex.})$

Yuji Kajiyama

(1) leptogenesis occurs below EWSB scale $(T < T_c)$,

- (2) source of CPV is in the Higgs sector,
- (3) large CP asymmetry ($0 < \epsilon < 10^{-3}$) is generated without resonance condition,
- (4) sphaleron converts $\eta_L \to \eta_B$ for $z_c < z < z_d$,
- (5) and we can get baryon asymmetry.

Present perspectives

- Using AdS/CFT correspondence some quantities in non-perturbative QCD can be computed: AdS/QCD
- Less-conventional solutions to hierarchy problem
 - Higgs mass protected by global symmetry (pseudo-Goldstone boson): Little Higgs
 - Higgs mass protected by higher dimensional gauge theory: gauge-Higgs unification
 - Composite Higgs: using AdS/CFT correspondence
 - Higgless models (breaking by boundary condition)
 - Higgs in conformal sector (unHiggs): dimension of H*H > 2: quadratic corrections softened
- Unexpected physics: hidden valley models, quirks, unparticles,..., leaving unexpected signatures

Future perspectives

They should depend on LHC!

PERHAPS AT MORIOND 2010...