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Recently, the static spherically symmetric solution of the gravitational field equations have
been found in theories describing massive graviton with spontaneous breaking of the Lorentz
invariance 1. These solutions, which show off two integration constants instead of one in
General Relativity, are discussed. They are candidates for modified black holes provided they
are stable against small perturbations. These solutions may have both attractive or repulsive
behavior at large distances. Therefore, these modified black holes may mimics the presence
of dark matter or be a source of anti-gravity.

1 Introduction

General Relativity describes the gravitational interaction through the exchange of massless par-
ticles, the gravitons. But could Einstein’s theory be generalized as to describe massive graviton?
Since the original work of W. Pauli and M. Fierz 2 in 1939, the attempts to answer this question
have spark off lots of attention, and still the debate is far from being closed (for a review on
the subject, see Rubakov et al. 3). Apart from the theoretical challenge in modifying Einstein’s
theory, recent advances in observational cosmology 4 has revived interest in large scale modifi-
cations of General Relativity. Theories of massive gravity, describing massive gravitons, belong
to this category.

Interestingly, on galactic and cosmological scales, the predictions of General Relativity theory
actually do not agree with observations; the agreement is only achieved after the introduction of
the otherwise undetected dark matter and dark energy. Yet, another explanation to these dark
paradigms may be possible: the law governing gravity on large scale could be different from
expected a. Hence, in parallel with the direct searches for the dark components, alternatives to
General Relativity should be explored.

aA combination of both explanations might also be needed.



From a phenomenological point of view, it is legitimate to study massive gravity since the
constraints on an hypothetical graviton mass are much weaker than those on massive photon 5.
Indeed, up to now gravitational waves have not been directly observed, although the secular
decrease of orbital period of binary pulsars has been shown to be compatible with the emission
of gravitational wave as predicted by General Relativity 6. The constraints on the graviton mass
are even lower for theories 7 in which the Lorentz invariance is spontaneously broken. These
models are motivated by the consistency problems that arise when trying to define a Lorentz
invariant theory of massive gravity 8. In the context of Lorentz breaking massive gravity, the
coherence between General Relativity and the observations requires the graviton mass to be
smaller than the inverse period of orbital motion of binary pulsars 9
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Indeed, because of the absence of Lorentz invariance, Newton’s potential remains unmodified in
the linear approximation despite the non-vanishing graviton mass. The Solar System constraints
are therefore satisfied for rather large graviton mass.

2 The model

The model under consideration is given by the following action 10
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The first two terms comprise the usual General Relativity action; they are the curvature and
the Lagrangian of the minimally coupled ordinary matter. The third term is a new contribution
describing four scalar fields φ0 and φi (with i = 1, 2, 3), through the following variables
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where Λ is a UV cutoff. The four scalar fields are known as Goldstone fields since their space-
time dependent vacuum expectation values break spontaneously the Lorentz invariance of the
model. It has the form

gµν = ηµν , φ0 = Λ2t, φ0 = Λ2xi,

while keeping the invariance under three dimensional rotations intact. It is worth noting that
the way these four scalar fields break the Lorentz invariance is not fundamentally different from
the way the CMB actually breaks it. Indeed, any observer could determine his motion with
respect to the CMB by studying the CMB dipole, and there is only one reference frame which
is at rest with respect to the CMB.

Models of massive gravity described by the previous action are free of the usual pathologies
that plague Lorentz invariant massive gravity. Despite the fact that they have massive gravitons,
these theories have a very interesting phenomenology. For example, the prediction of these
models concerning the growth of perturbations in the post-inflationary Universe are compatible
with General Relativity’s predictions 11. Moreover, the density perturbations could even grow
faster in these models than in the Einstein’s theory. Another interesting feature is the presence
of an instantaneous interaction 12. Finally, contrary to what General Relativity predicts, black
holes seems to posses hairs in Lorentz breaking massive gravity 13.



3 Exact spherically symmetric solutions

The exact spherically symmetric solution, or Schwarzschild solution, plays a central role in
General Relativity. First, it describe the metric outside of spherical non-rotating bodies. In
its weak field limit, this solution reduce to Newton’s potential. Second, this solution describe
black holes. Interestingly, the Schwarzschild solution is modified in Lorentz-violating massive
gravity 1. Indeed, consider a toy model characterized by the following function
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where c0 and λ are dimensionless constants. This function has been chosen in such a way that
the resulting equations are solvable analytically b. Then, the metric part of the solution reads c

ds2 = (1 + 2Φ) dt2 − dr2

1 + 2Φ
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)
.

This solution depend on two integration constants, M and S, instead of one in Einstein’s theory.
For S = 0 this solution reduce to the usual Schwarzschild solution describing a black hole of
mass M. Therefore, the “scalar charge” S is responsible for a modification of the geometry as
compared to General Relativity. The behavior of this solution is determined by the value of the
two integration constants and by the value of λ. Taking λ > 1 will guarantee that the new term,
proportional to S, dominates at small distances while the usual Schwarzschild term dominates
at infinity. Then, the mass measured by an observer who believes in General Relativity will
converge to M at infinity.

Both terms in the potential are singular at the origin. Therefore, the physical solutions are
those with an horizon to hid the singularity. The presence of an horizon depends on the relative
value of M and S. If |S| ≡ s−λ, the existence of an horizon requires that

sM ≥ λ

2GN

(
1

λ− 1

)λ−1
λ

. (1)

The two charges M and S are determined by matching the exterior solution to the interior one,
which depends of the object under consideration. For a static star made of usual matter, it is
possible to show that M is actually the mass of the star while S = 0. It remains an open question
how objects (e.g., black holes) with S 6= 0 can be created. But it is conceivable that a non-zero
scalar charge may be acquired during the gravitational collapse.

Still, there are two interesting different types of solutions depending on the value of these
charges. The first type is characterized by M > 0 and S < 0. These solutions, shown in Fig.1-(a),
are attractive all the way to the horizon. Since the gravitational potential deduced from them
increases slower than in the Einstein’s theory, they induce a gravitational force which decreases
slower than in General Relativity. Therefore, these solutions may mimic the presence of dark
matter.

The second type of solutions, shown in Fig.1-(b), are those which show an anti-gravitating
behavior. They are characterized by M < 0 and S > 0. These solutions are attractive below
a certain distance, and become repelling at larger distances since their potential is decreasing

bAnother example is discussed in Bebronne et al. 1 by solving numerically the equations of motions.
cFor this solution, the scalar fields are given by
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and φi = Λ2xi.
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Figure 1: Newton’s potential for two different choices of the integration constants. Fig. (a) correspond to M > 0
and S < 0 while Fig. (b) represents solution with M < 0 and S > 0. The dashed curves are the usual Newtonian

potential corresponding to the Schwarzschild solutions of General Relativity.

then. It is worth noting that in General Relativity only positive value of M make sense. In-
deed, for M < 0 the Schwarzschild solution posses a naked singularity at the origin which is
physically unacceptable. Moreover, the conventional matter satisfies the null energy condition
which ensures that any compact spherically-symmetric matter distribution has a positive mass.
None of these arguments goes through in the case of massive gravity. Indeed, a singularity with
a negative mass could still be hidden by an horizon provided that the condition (1) is satis-
fied. The positivity of energy is also not expected in massive gravity, since the vacuum breaks
the invariance under time translations. In massive gravity, only the combination of the time
translations with the shifts of φ0 by a constant remains unbroken.

These solutions show a richer phenomenology than the one predicted by General Relativity.
Still, there are several open question about them. For example, one has to check that these
solutions are stable against small perturbations, otherwise the black hole interpretation will not
be possible. Another open question concern the possibility of having a non zero scalar charge.
These questions, among others, deserve further studies.
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