Top Mass Measurement Using a Matrix Element Method with Quasi-Monte Carlo Integration

Paul Lujan
UC-Berkeley/Lawrence Berkeley National Laboratory

for the CDF II Collaboration

Motivation

- The top quark is the heaviest known particle in the Standard Model and hence couples strongly with the Higgs boson.
- Radiative corrections relate the Higgs boson mass to the top quark mass and the W boson mass.

 Precision measurements of the top quark mass (in conjunction with the W boson mass) thus help to constrain the Higgs mass.

Event Selection

 Our latest measurement is performed with 3.2 fb⁻¹ of integrated luminosity collected at the CDF II detector, using events in the "lepton+jets" channel.

 We require 4 tight jets (corrected E_T > 20 GeV) with at least one b-tag, a tight lepton (electron or muon), and missing E_T from the neutrino.

Background type	Expected contribution
W + heavy flavor (bb, cc, c)	70.1 ± 22.0
W + light mistag	23.5 ± 5.7
Non-W QCD	25.0 ± 20.5
Single top, diboson, Z+jets	16.5 ± 0.9

Matrix Element Method

- The matrix element method is based on integrating the matrix element for top pair production and decay over the unknown variables to generate a likelihood.
- We introduce an additional parameter representing the jet energy scale, Δ_{JES} , into our likelihood. This allows us to use the information in the W decay to determine the JES and reduce the systematic uncertainties associated with JES.

Jet systematic uncertainties

Sample 2-D likelihood curve

Integration Ingredients

normalization and acceptance

sum over all 24 possible permutations

$$L(\vec{y} \mid m_t, \Delta_{\text{JES}}) = \frac{1}{N(m_t)} \frac{1}{A(m_t, \Delta_{\text{JES}})} \sum_{i=1}^{24} w_i L_i(\vec{y} \mid m_t, \Delta_{\text{JES}})$$

with

$$L_i(\vec{y} \mid m_t, \Delta_{\text{JES}}) = \int \frac{f(z_1)f(z_2)}{FF} \, \text{TF}(\vec{y} \mid \vec{x}, \Delta_{\text{JES}}) \, |M(m_t, \vec{x})|^2 \, d\Phi(\vec{x})$$

parton distribution functions (PDFs) for incoming partons

matrix element

transfer functions (TF) connect the measured jet momenta with the partons

momentum TF

angle TF

19-dimensional integral - very computationally intensive. Quasi-Monte Carlo integration reduces the time to ~80 min/event.

After the Integration

- Events likely to be background are identified using a neural network and their likelihood is subtracted from the total.
- A cut on the peak value of the loglikelihood is applied to reduce background and "bad signal" events (where we see a jet or lepton not from the top pair decay).
- Monte Carlo simulated samples are used to test and calibrate the method.

← output vs. input mass

pull (uncertainty correction) →

Results

$m_t = 172.1 \pm 0.9 \text{ (stat.)} \pm 0.7 \text{ (JES)} \pm 1.1 \text{ (syst.)} \text{ GeV/c}^2$

Total uncertainty of 1.6 GeV/c²: Best individual top mass measurement to date!

Total of 497 events passing all cuts

 \leftarrow Overall contours of 1- σ , 2- σ , and 3- σ uncertainty about our measured value

Log-likelihood peaks agree well in data and MC!

	• • • • • • • • • • • • • • • • • • • •
Systematic source	Systematic uncertainty (GeV/c^2)
Calibration	0.2
MC generator	0.5
ISR and FSR	0.3
Residual JES	0.5
b-JES	0.4
Lepton P_T	0.2
Multiple hadron interactions	0.1
PDFs	0.2
Background	0.5
Color reconnection	0.4
Total	1.1

http://www-cdf.fnal.gov/physics/new/top/2009/mass/mtm3_p19_public/

Latest m_t Combination

Winter 2009 CDF combination

This measurement = 76.5% weight

Quasi-MC Integration

- Quasi-Monte Carlo integration uses, instead of a random point sequence (top), a quasi-random sequence (bottom).
- Formally speaking, a quasi-random sequence has a low discrepancy, where the discrepancy is a measure of the nonuniformity of the distribution. We use the scrambled Sobol sequence.
- Quasi-MC integration can offer better convergence than the 1/√N convergence of normal MC integration.
- See, for instance, hep-ph/0504085 or hep-ph/9601270.

Likelihood Cut

Type of event	Fraction before cut	Efficiency of cut	Fraction after cut
Good signal	49.9%	96.6%	55.6%
Bad signal	26.9%	79.6%	24.7%
Background	23.2%	73.4%	19.7%

Adding in the likelihood cut improves our expected resolution at m_t = 172 GeV/ c^2 by 0.23 GeV/ c^2 – a substantial gain!

Final Uncertainty

How lucky are we in our observed uncertainty?

14% of pseudo-experiments show a lower uncertainty than measured in data.

2-D Calibration

By observing the measured top mass as a function of the input Δ_{JES} (top), we can see that there is some slight dependence. We thus fit a line to the observed m_{t} shift as a function of Δ_{JES} (bottom) and add this term to our calibration.

Acceptance & Normalization

200

Acceptance (left) accounts for the changes in detector acceptance with m_t and Δ_{IES} .

Normalization (right) is obtained by integrating the matrix element and PDFs over the parton phase space.

Integration Variables

- m_t² and m_W² on the two sides of the event (4)
- p_T of the ttbar system (2)
- $\beta = \log(p_{q1}/p_{q2})$, where q_1 and q_2 are the decay products of the hadronic W (1)

New with the quasi-MC integration:

- Masses for each of the four partons (4)
- $\Delta \eta$ and $\Delta \phi$ for each of the four partons (8)