

Outline

- Introduction
 The standard 3v framework
- Re-charting a familiar territory
 The leading mass-mixing parameters
- Exploring an uncharted land Hints of non-zero θ_{13}
- Future perspectives and conclusions

The standard 3v framework

The leptonic mixing

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad \begin{array}{l} (i=1,2,3)\\ (\alpha=e,\mu,\tau) \end{array}$$

$$U = O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}$$

$$\Gamma_{\delta} = \text{diag}(1, 1, e^{+i\delta})$$

 $\delta \in [0, 2\pi]$ Dirac CP-violating phase
unknown

Explicit form:

$$U = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \ 0 & 1 & 0 \ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix}$$

The neutrino mass spectrum

Experimental Sensitivities

"fixed" by Atm + LBL

The leading "atmospheric" parameters

Fogli et al., Phys. ReV. D 78, 033010 (2008) [arXiv:0805.2517v3]

Solar v data consistent with MSW transitions

Spectacularly confirmed by KamLAND

Precision measurement of spectral distortions

Osc. pattern observed over one entire cycle

Determination of δm^2 with high precision

2v Solar + KamLAND constraints

KamLAND dominates δm^2 determination

Interplay of Solar and KamLAND in determining θ_{12}

But small tension among them is present

The leading "solar" parameters

Errors are linear, precision era now entered

Hints of θ_{13} > 0

G.L Fogli, E. Lisi, A. Marrone, A.P., A.M. Rotunno arXiv:0806.2649 [hep-ph] PRL 101, 141801 (2008) CHOOZ and 3v global analyses: Interplay in pinning down θ_{13}

The "old" hint from atmospheric data

weak (~1 sigma) preference for θ_{13} >0

 A possible source: excess of sub-GeV electron-like events partially explained by 3ν subleading effects driven by the "solar" splitting δm²

In the past this "hint" was not corroborated by solar & KamLAND, which systematically preferred $\theta_{13} = 0$

But such a trend has recently changed...

G.L. Fogli, E. Lisi, A. Marrone, A.P., Prog. Part. Nucl. Phys. 57, 742 (2006)

The new hint from solar + KamLAND

Solar v data: from 2005 to 2008

 $\begin{array}{ccc} 2005 & 2008 \\ \text{SNO-II} & \text{SNO-III} \\ \frac{CC}{NC} = 0.34 \pm 0.38 & 0.301 \pm 0.33 \end{array}$

- Central value lower than before

best fit of θ_{12} at a slightly lower value

- Error reduced when combined

range allowed for θ_{12} appreciably narrowed (now ~ symmetric)

apparently a small change!

*See also Balantekin and Yilmaz, J. Phys. G. 35, 075007 (2008)

Interplay of Solar and KamLAND

19

Comparison with other existing analyses Schwetz, Tortola, Valle, arXiv:0808.2016

preference for θ_{13} >0 found at a slightly higher CL (~1.5 sigma)

Consensus on the the sol+kam hint

The global hint

Status of the electron neutrino mixing

27th Feb 2009, a new hint from MINOS v_e appearance ?

 $\theta_{13} = 0$ disfavored at ~ 90%

The Collaboration, conservatively, does not attach any particular relevance to this fact

However, combining their results with ours...

By courtesy of M. Sanchez

... an overall hint at 2 sigma level emerges

Future perspectives

New relevant information expected from:

KamLAND	New data expected. Furthermore, it has been noted that in a multi-reactor setup one expects partial cancellations of random distributed errors (Djurcic et al., 0808.0747 [hep-exp]). Possible impact on the of "S+K hint"				
SNO	Low energy threshold analysis (LETA) underway. Increased NC statistics. See talk by A. McDonald, at Neutrino Telescopes 2009.				
Atm.	A complete 3v analysis including subleading effects induced by "solar parameters" is expected from the SK collaboration. See talk by M. Nakahata at Neutrino Telescopes 2009.				
MINOS	Results with double statistics expected soon. See talk by M. Sanchez.				
D-CHOOZ	First data, using a single detector, to be collected before the end of this year. First results could be expected by the summer of 2010.				
Daya-Bay	First results expected in 2011				

What we may expect from Solar and KamLAND

What we may expect from reactor and accelerator exp.

Adapted from Huber et. al JHEP 0605, 072 (2006)

Conclusions

- All data fit within the standard 3v framework
- Three independent hints of θ_{13} >0
- Global hint now at the 2 sigma level (95% C.L.)
- Further data needed to clarify the issue
- If the trend persists:

In the near future (~2 years) it is conceivable to envisage a scenario with several concurrent hints, each unable to provide decisive indication.

Back-up slides

3v analysis including sub-leading LMA effects

G.L. Fogli, E. Lisi, A. Marrone, A.P., Prog. Part. Nucl. Phys. 57, 742 (2006)

31

Excess of electron events induced by 3v subleading effects

$$\frac{N_e}{N_e^0} - 1 = (P_{ee} - 1) + r P_{e\mu} \longrightarrow \begin{array}{c} \text{zero when} \\ \text{both} \\ \theta_{13}=0 \quad \& \quad \delta m^2 = 0 \end{array}$$

$$\stackrel{v_{\mu} \wedge_e}{\text{flux ratio}} \quad \text{multi-GeV } r \sim 2 \\ \text{multi-GeV } r \sim 3.5 \end{array}$$

$$\begin{array}{c} \text{Constant density approximation} \quad \frac{N_e}{N_e^0} - 1 \simeq \Delta_1 + \Delta_2 + \Delta_3 \\ \stackrel{\text{"}\theta_{13} \text{ term"}}{\text{ term"}} \quad \Delta_1 \simeq \sin^2 2\tilde{\theta}_{13} \sin^2 \left(\Delta m^2 \frac{\sin 2\theta_{13}}{\sin 2\tilde{\theta}_{13}} \frac{L}{4E} \right) \cdot (rs_{23}^2 - 1) \\ \stackrel{\text{"}\deltam^2 \text{ term"}}{\text{ term"}} \quad \Delta_2 \simeq \sin^2 2\tilde{\theta}_{12} \sin^2 \left(\delta m^2 \frac{\sin 2\theta_{12}}{\sin 2\tilde{\theta}_{12}} \frac{L}{4E} \right) \cdot (rc_{23}^2 - 1) \\ \stackrel{\text{"Thterference}}{\text{term"}} \quad \Delta_3 \simeq \sin^2 2\tilde{\theta}_{12} \sin^2 \left(\delta m^2 \frac{\sin 2\theta_{12}}{\sin 2\tilde{\theta}_{12}} \frac{L}{4E} \right) \cdot rs_{13}c_{13}^2 \sin 2\theta_{23} (\tan 2\tilde{\theta}_{12})^{-1} \end{array}$$

*O.L.G Peres and A.Yu. Smirnov, Nucl. Phys. B 456, 204 (1999); ibidem 680, 479 (2004)

32

Expressions valid for $[\nu, \text{ N.H.}, \delta = 0]$:

Mixing angles in matter

$$\frac{\sin 2\theta_{13}}{\sin 2\tilde{\theta}_{13}} \simeq \sqrt{\left(\frac{A}{\Delta m^2 + \frac{\delta m^2}{2}\cos 2\theta_{12}} - \cos 2\theta_{13}\right)^2 + \sin^2 2\theta_{13}}$$
$$\frac{\sin 2\theta_{12}}{\sin 2\tilde{\theta}_{12}} \simeq \sqrt{\left(\frac{Ac_{13}^2}{\delta m^2} - \cos 2\theta_{12}\right)^2 + \sin^2 2\theta_{12}}$$

$$\frac{A}{\Delta m^2} \simeq 1.3 \left(\frac{2.4 \times 10^{-3} \text{ eV}^2}{\Delta m^2}\right) \left(\frac{E}{10 \text{ GeV}}\right) \left(\frac{N_e}{2 \text{ mol/cm}^3}\right)$$
$$\frac{A}{\delta m^2} \simeq 3.8 \left(\frac{8 \times 10^{-5} \text{ eV}^2}{\delta m^2}\right) \left(\frac{E}{1 \text{ GeV}}\right) \left(\frac{N_e}{2 \text{ mol/cm}^3}\right)$$

"Swapping" relations

$$+A \to -A \qquad (\nu \to \bar{\nu})$$

+ $\Delta m^2 \to -\Delta m^2 \qquad (N.H. \to I.H.)$
+ $s_{13} \to -s_{13} \qquad (\delta = 0 \to \delta = \pi)$

Exact numerical examples

"θ₁₃ term" dominant

"δm² term" dominant

"Interference term" dominant (only in sub-GeV)

Parameter	$\delta m^2 / 10^{-5} \ \mathrm{eV}^2$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{23}$	$\Delta m^2/10^{-3} \ \mathrm{eV}^2$
Best fit	7.67	0.312	0.016	0.466	2.39
1σ range	7.48-7.83	0.294 - 0.331	0.006 - 0.026	0.408 - 0.539	2.31-2.50
2σ range	7.31-8.01	0.278 - 0.352	< 0.036	0.366 - 0.602	2.19-2.66
3σ range	7.14-8.19	0.263 - 0.375	< 0.046	0.331 - 0.644	2.06-2.81

Model-independent consistency checks

1) "internal" consistency among SNO (CC,NC) and SK (ES)

2) consistency among NC measurement and Solar Model

Origin of the different correlations

Different relative sign for $(\theta_{12}, \theta_{13})$ in P_{ee} of Solar (high-E dominated) vs KamLAND

High-E solar
(adiabatic MSW)
$$\rightarrow$$
 $P_{ee} \simeq (1 - 2s_{13}^2)(+ s_{12}^2)$ KamLAND
(vacuum) \rightarrow $P_{ee} \simeq (1 - 2s_{13}^2)(1 - 4s_{12}^2c_{12}^2\sin^2\phi)$ coscillation phase $\phi = \frac{\delta m^2 L}{4E}_{37}$

Solar v's probe two different regimes

Low-E behavior is similar to that probed in KamLAND, so we expect an analogous complementarity of high-E and (future) $low_{\frac{38}{38}}$

"Contrasting" low-E with high-E data

Goswami and Smirnov, PRD 72, 053011 (2005)