

Fabrizio Bianchi University of Torino and INFN-Torino

BABAR

Rencontres de Moriond EW 2009 La Thuile, 7-14 March 2009

ALMA UNIVERSITAS TAURINENSIS

Outline

- Introduction to the measurement of |V_{cb}| and |V_{ub}|
- Results from the B-factories:
 - IV_{cb} from Spectral Moment
 - FF x | V_{cb} | from B \rightarrow D^(*)Iv
 - Inclusive | V_{ub} |
 - IV_{ub} from exclusive SL charmless B decays
- Summary and outlook

Constraints on Unitarity Triangle

A precise determination of $|V_{ub}/V_{cb}|$ is crucial to be able to observe deviations from the CKM mechanism due to New Physics

Semileptonic B Decays

 $|V_{cb}|$ and $|V_{ub}|$ are determined from semileptonic B decays. At tree level everything is nice and clean.

QCD corrections must be included.

- Inclusive measurements: OPE
- Exclusive measurements: Form Factors from LQCD

$$\frac{\Gamma(b \to u \ell \bar{\nu})}{\Gamma(b \to c \ell \bar{\nu})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

||V_{cb}| from Spectral Moments

OPE: Semileptonic Width

$$\begin{split} \Gamma(\bar{B} \to X_c \ell \bar{\nu}) &= \frac{G_F^2 |V_{cb}|^2 m_b^5}{192 \pi^3} \left\{ f(\rho) + k(\rho) \frac{\mu_{\pi}^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} \right. \\ &+ \left. \frac{d(\rho) \frac{\rho_D^3}{m_b^3} + 0}{m_b^3} + \frac{d(\rho) \frac{\rho_{\rm LS}^3}{m_b^3}}{m_b^3} + \mathcal{O}(m_b^{-4}) \right\} \end{split}$$

$$\rho = \frac{m_c^2}{m_b^2}$$

Wilson coefficients *f, k, g, d, l* can be calculated in perturbation theory.

Non-perturbative parameters μ_{n} , μ_{G} , ρ_{D} , ρ_{LS} are matrix elements of local operators in HQET.

OPE: Other Observables

• Moments of the lepton energy spectrum in $B \rightarrow X_c I_V$

$$R_n(E_{\rm cut},\mu) = \int_{E_{\rm cut}} \left(E_\ell - \mu\right)^n \, \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \, \mathrm{d}E_\ell \,, \quad \left\langle E_\ell^n \right\rangle_{E_{\rm cut}} = \frac{R_n(E_{\rm cut},0)}{R_0(E_{\rm cut},0)}$$

• Moments of the hadronic mass spectrum in $B \rightarrow X_c I_V$

$$\langle m_X^{2n} \rangle_{E_{\rm cut}} = \frac{\displaystyle \int_{E_{\rm cut}} (m_X^2)^n \, \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2} {\displaystyle \int_{E_{\rm cut}} \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2} }$$

• Moments of the photon energy spectrum in $B \rightarrow X_{s\gamma}$

$$\langle E_{\gamma}^{n} \rangle_{E_{\rm cut}} = \frac{\int_{E_{\rm cut}} E_{\gamma}^{n} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\gamma}} \, \mathrm{d}E_{\gamma}}{\int_{E_{\rm cut}} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\gamma}} \, \mathrm{d}E_{\gamma}}$$

OPE for moments involves *same matrix elements* **and different**, calculable Wilson coefficients.

•Kinetic running mass

•P.Gambino, N.Uraltsev, Eur.Phys.J. C34, 181 (2004)
•D.Beson, I.Bigi, N.Uraltsev, Nucl.Phys. B710, 371 (2005)

•1S mass

•C.Bauer, Z.Ligeti, M.Luke, A.Manohar, M.Trott, Phys.Rev. D70, 094017 (2004)

	Electron moments	n=0: E _{cut} =0.6, 1.0, 1.4 GeV
BELLE	<e<sup>n_></e<sup>	n=1: E _{cut} =0.6, 0.8, 1.0, 1.2, 1.4 GeV
		n=2: E _{cut} =0.6, 1.0, 1.4 GeV
		n=3: E _{cut} =0.8, 1.0, 1.2 GeV
Belle Results	Hadron moments	n=1: E _{cut} =0.7, 1.1, 1.3, 1.5 GeV
	$< M^{2n} \times N^{2n}$	n=2: E _{cut} =0.7, 0.9, 1.3 GeV
	Photon moments	n=1: E _{cut} =1.8, 2.0 GeV
-	<e<sup>n_></e<sup>	n=2: E _{cut} =1.8, 2.0 GeV

Fit in the Kinetic Scheme

Phys. Rev. D78, 032016 (2008)

χ²/ndf. = 4.7 / (25-7)

Belle Results

Kinetic scheme ($X_c I_v + X_s \gamma$ data)

$$\begin{split} |V_{cb}| &= (41.58 \pm 0.69_{fit} \pm 0.08_{cB} \pm 0.58_{th}) \times 10^{-3} \\ m_b{}^{kin} &= 4.543 \pm 0.075 \text{ GeV} \\ m_c{}^{kin} &= 1.055 \pm 0.118 \text{ GeV} \end{split}$$

Results for $m_{\rm b}$ compatible after scheme translation

1S scheme ($X_c I_V + X_{s\gamma} data$) $|V_{cb}| = (41.56 \pm 0.68_{fit} \pm 0.08_{\tau B}) \times 10^{-3} m_b^{-1S} = 4.723 \pm 0.055 \text{ GeV}$

Bell Moment Analysis not included

FF x $|V_{cb}|$ from B \rightarrow D^(*)I_V

V_{CB} & Form Factors: $B \rightarrow D^{(*)} I_V$

HQET expansion of $B \rightarrow D^{(*)} |_{V}$ width:

$$\frac{d\Gamma(D)}{dw} = \frac{G^{2}{}_{F}}{48\pi^{3}\hbar} (M_{B} + M_{D})^{2} M^{3}{}_{D} (w^{2} - 1)^{3/2} |V_{cb}| G^{2}(w) \qquad w = \frac{P_{B} \cdot P_{D}}{M_{B}M_{D}}$$
$$\frac{d\Gamma(D^{*})}{dw} = \frac{G^{2}{}_{F}}{48\pi^{3}\hbar} (M_{B} + M_{D^{*}})^{2} M^{3}{}_{D^{*}} (w^{2} - 1)^{1/2} (w + 1)^{2} |V_{cb}| F^{2}(w) \sum_{+,0,-} |\tilde{H}_{i}(w)|^{2}$$

Caprini et al. Parametrization of FF (Nucl.Phys.B 530 (1998), 153):

$$\begin{aligned} G(w) &= G(1) \left[1 - 8\rho^2 z + (51\rho^2 - 10) z^2 - (252\rho^2 - 84) z^3 \right] \\ F(w) &= \dots \end{aligned} \qquad z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \end{aligned}$$

Experiments measure:

- |Vcb| *FF(w→1)
- $\rho^2_{D'} \rho^2_{D^*}$ (slopes of FF)
- R₁,R₂ : form factor ratios (D*)

arXiv:0810.1657 [hep-ex] 140 fb⁻¹

θ.

D**

θ.

$B \rightarrow D^* I v$ Untagged Analysis

- Decay chain: $B^{0} \rightarrow D^{*+} Iv \quad D^{*+} \rightarrow D^{0} (K^{-}\pi^{+}, K3\pi)\pi^{+}$
- Measure helicity angles ($\Theta_{I}, \Theta_{V}, \chi$)

• Fit:
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\mathrm{w}\mathrm{d}_{\mathcal{X}}\mathrm{d}(\cos\Theta_{1})\mathrm{d}(\cos\Theta_{v})}$$

w, [sum of all channels]

 $\rho^{2} = 1.293 \pm 0.045 \pm 0.029$ B(B⁰ \rightarrow D^{*-}l⁺ v_{1}) = 1.495 \pm 0.050 \pm 0.062 F(1) | V_{cb} | ×10³ = 34.4 \pm 0.2 \pm 1.0

arXiv:0807.4978 [hep-ex]

417 fb⁻¹

 $B \rightarrow DIv$ Hadronic Tag Analysis

$B \rightarrow D^* |_{V}$ Hadr Tag Analysis

Important to reduce systematic in |V_{cb}| excl. measurements.

Discrepancy between B->X_cIv inclusive rate and sum of exclusive modes.

Decay M	Mode	Yield	$\epsilon_{\rm sig}(\times 10^{-4})$	$\mathcal{B}(\overline{B} \to D^{**}\ell^- \bar{\nu}_\ell) \times \mathcal{B}(D^{**} \to D^{(*)}\pi^{\pm})$
$B^- \rightarrow I$	$D_1^0 \ell^- \bar{\nu}_\ell$	165 ± 18	1.24	$0.29 \pm 0.03 \pm 0.03$
$B^- \rightarrow I$	$D_2^{\bullet 0} \ell^- \overline{\nu}_\ell$	97 ± 16	1.44	$0.15 \pm 0.02 \pm 0.01$
$B^- \rightarrow I$	$D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	142 ± 21	1.13	$0.27 \pm 0.04 \pm 0.05$
$B^- \rightarrow I$	$D_0^{*0}\ell^-\bar{\nu}\ell$	137 ± 26	1.15	$0.26 \pm 0.05 \pm 0.04$
$\overline{B}^0 \rightarrow L$	$D_1^+ \ell^- \bar{\nu}_\ell$	88 ± 14	0.70	$0.27 \pm 0.04 \pm 0.03$
$\overline{B}^0 \rightarrow L$	$D_2^{*+}\ell^-\bar{\nu}_\ell$	29 ± 13	0.91	$0.07 \pm 0.03 \pm 0.01 \ (< 0.11 \ @90\% \ CL)$
$\overline{B}^0 \rightarrow L$	$D_1^{\prime +} \ell^- \bar{\nu}_{\ell}$	86 ± 18	0.60	$0.31 \pm 0.07 \pm 0.05$
$\overline{B}^0 \rightarrow L$	$D_0^{\bullet+}\ell^-\bar{\nu}\ell$	142 ± 26	0.70	$0.44 \pm 0.08 \pm 0.06$

arXiv:0808.0528 [hep-ex] 417 fb⁻¹

C. Bernard et al., arXiv:0808.2519[hep.lat] M. Okamoto et al., Nucl. Phys. Proc. Suppl. 140, 461 (2005)

V_{CB} & Form Factors: Averages

Open Issues on $|V_{cb}|$ Measurements

|V_{cb}**| from Moment Analysis**

- Belle recent results in good agreement with HFAG average
- Open questions on HFAG global fit:
 - •Inclusion of the B -> $X_s \gamma$ data lowers the b-quark mass m_b
 - χ^2 /ndf = 29.7/57 (24.1/46) Too small ?

$F(1) |V_{cb}|$ and $G(1) |V_{cb}|$ from $B \rightarrow D^{(*)} I_V$

- Good agreement between experiments
- |Vcb| extracted using LQCD 2σ lower than result from Moment Analysis

|V_{ub}| from Inclusive Semileptonic B Decays

Inclusive |V_{ub}| Measurement I

Charm background ~50x larger than signal Use kinematics to distinguish X_u signal from X_c BG ($m_c >> m_u$)

- E_{LEP} = lepton energy
- q^2 = momentum transfer squared = $(p_B p_X)^2 = (p_I + p_v)^2$
- m_x = mass of the hadronic system
- $P^+ = E_X^- |p_X| = \text{light-cone component of X momentum}$

PRL 100, 171802 (2008)

BaBar: Hadronic tag technique

Belle Multivariate Analysis

- Hadronic Tag
- Boosted decision tree based selection, use ~20 event parameters
- 2D fit to M_x, q² with backgrounds and signal floated

Kinematic	<i>B</i> (B→ <i>X</i> _u Iv) x 10 ⁻³	m _b	V _{ub} (10 ⁻³) % error	00	
Region	Δ(stat. sys.)			Theory	
P _{lepton} > 1.0 GeV	1.96 x (1 ± 0.088 ± 0.076)	(kinetic) 4.613 GeV, mupi=0.440 GeV ²	4.42 (± 3.1 ± 5.1)	GGOU (thanks P. Giordano)	
		(MSbar) 4.243 GeV	4.47 (± 6.7)	DGE (thanks E. Gardi)	

Belle multivariate analysis not included

|V_{ub}| from Exclusive SL Charmless B Decays

Exclusive |Vub| Measurements

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_{\pi}^3 \left| f_+(q^2) \right|^2$$

Different systematic errors

and independent samples

Complementary exp approaches:

- Untagged (with v reconstruction)
- Semileptonic tag
- Hadronic tag

Different form factor calculations

See Talk of R. Sommer

Perform measurement in q² bins to reduce model dependency

Reconstruct neutrino from full event: $(\vec{p}_{miss}, E_{miss}) = (\vec{p}_{beam}, E_{beam}) - (\sum \vec{p}_i, \sum E_i)$ Extract signal yield in 12 q² bins from fit to ΔE vs. m_{ES} distributions

- Tag one B in $D^{(*)}Iv$ and look for signal in the recoil;
- Identify a signal lepton (right charge) and search for a: • π^+ , π^- , π^0 • $\eta \to \gamma \, \gamma$, $\eta \to \pi^+ \; \pi^- \; \pi^0$, $\eta \to \pi^0 \; \pi^0 \; \pi^0$ • $\eta \rightarrow \eta \pi^+ \pi^-$
- No additional tracks and low neutral energy;
- Extract signal yields with unbinned maximum likelihood fit to $\cos^2 \phi_{B}$.

 $\mathcal{B}(B^+ \to n' \ell^+ \nu) = (2.66 \pm 0.80 \pm 0.56) \times 10^{-4}$

arXiv:0812.1414 [hep-ex] 605 fb⁻¹

$B \rightarrow \pi$, (ρ , ω) | ν Hadronic Tag

- Fully reconstruct the B_{reco}
- Know kinematics and flavor of signal B
- Extract signal yields from M²_{miss} ≈ M²_v distribution in 3 q² bins

Data

Missing mass squared (GeV²)

49±9

uly crossfeed

Other backgrounds

31

|Vub| from $B \rightarrow \pi I_V$: HFAG average

Open Issues in |Vub| Measurements

Inclusive measurements:

- Nice consistency of $|\,V_{ub}\,|\,$ measurements extracted using the same calculations
- Different |V_{ub}| values are obtained when using different calculations
- $(\delta |V_{ub}| / |V_{ub}|)_{exp} \sim 4\%$ $(\delta |V_{ub}| / |V_{ub}|)_{Th} \sim 6-7\%$

Exclusive measurements:

- Uncertainties from Form Factors are the dominant systematic
 - $(\delta |V_{ub}| / |V_{ub}|)_{exp} \sim 5\%$ $(\delta |V_{ub}| / |V_{ub}|)_{FF} = +17\% -11\%$
- Need more data to constraint different calculations
- Looking for progress from LatticeQCD

Exclusive measurements give a lower |V_{ub}| than inclusive ones 33

- Progressing in the understanding of B SL decays
- Inclusive |V_{cb}| precision now at 2% level
 - Still remaining issues on global fit and $B \rightarrow X_s \gamma$ data inclusion
- Many new results on B->D^(*)Iv decays
 - Precision on $|V_{cb}|$ measurements limited by form factor knowledge
 - Lower value (2 σ) than from inclusive analysis
- Inclusive $|V_{ub}|$ measurements now at 8% precision
 - Limited by calculation of theoretical phase space acceptances
- Exclusive |V_{ub}| measurements limited by form factor knowledge
 - Need more data and progress on theoretical calculation
 - Puzzle of exclusive vs inclusive |V_{ub}| values not yet solved

Backup Slides

Experimental Methods

Hadronic Tag:

Fully reconstruct hadronic decay of one B: $B \rightarrow D^{(*)} + (\pi^+, \pi^0, K^+, K^0) \approx 1000 \text{ modes}$ \rightarrow know kinematics of other B

Semileptonic Tag:

Reconstruct $B \rightarrow D^{(\star)} \ell v$ and study recoil

- Full reconstruction of D(*)
- Partial reconstruction of D* (only l, π_{soft})
- Two $\nu \rightarrow$ tag-B kinematics incomplete

No Tag: High statistics High backgrounds and cross-feed → Fully reconstruct signal side (v reco.)

 $\tau_{p} = 1.530009$

 ΔB is the partial branching fraction

 $\Delta \zeta$ calculated using:

- LCSR for $q^2 < 16 \text{ GeV}^2$
- Lattice QCD for q²>16 GeV²

$B \rightarrow \pi, \rho, \omega \mid v \mid Hadronic Tag$

		$\Delta B \left[10^{-4} \right]$		B [10 ⁻⁴]
Mode	$0 < q^2 < 8$	$8 < q^2 < 16$	$q^2 > 16$	Sum
	(GeV^2)	(GeV^2)	(GeV^2)	(GeV^2)
$B \rightarrow \pi^+ \ell \nu$	$0.43 \pm 0.11 \pm 0.02$	$0.42 \pm 0.11 \pm 0.02$	$0.26 \pm 0.08 \pm 0.01$	$1.12 \pm 0.18 \pm 0.05$
$B o \pi^0 \ell \nu$	$0.26 \pm 0.09 \pm 0.01$	$0.17 \pm 0.05 \pm 0.01$	$0.22 \pm 0.06 \pm 0.01$	$0.66 \pm 0.12 \pm 0.03$
$B \rightarrow \rho^+ \ell \nu$	$0.74 \pm 0.29 \pm 0.04$	$1.01 \pm 0.28 \pm 0.05$	$0.81 \pm 0.21 \ \pm 0.04$	$2.56 \pm 0.46 \pm 0.12$
$B \rightarrow \rho^0 \ell \nu$	$0.72 \pm 0.15 \ \pm 0.03$	$0.70 \pm 0.13 \ \pm 0.03$	$0.39 \pm 0.11 \ \pm 0.02$	$1.80 \pm 0.23 \pm 0.07$
$B \to \omega \ell \nu$	$0.23 \pm 0.17 \ \pm 0.01$	$0.64 \pm 0.21 \ \pm 0.03$	$0.32 \pm 0.17 \ \pm 0.01$	$1.19 \pm 0.32 \pm 0.05$

arXiv:0812.1414 [hep-ex] 605 fb⁻¹

|Vub| from $B \rightarrow \pi l v$ Hadr. Tag

	Mode	$q^2 [{ m GeV}^2]$	$\Delta \zeta ~[{ m ps}^{-1}]$	$ V_{ub} $ [10 ⁻³]
Ball-Zwicky [30]	π+	< 16	5.44 ± 1.43	$3.2 \pm 0.3 \pm 0.1 ^{+0.5}_{-0.4}$
Gulez et. al. [31]	π+	> 16	2.07 ± 0.57	$2.9 \pm 0.5 \pm 0.1 \substack{+0.5 \\ -0.3}$
Okamoto et. al. [32]	π+	> 16	1.83 ± 0.50	$3.0 \pm 0.5 \pm 0.1 ^{+0.5}_{-0.3}$
Ball-Zwicky [30]	$\pi^{+} + \pi^{0}$	< 16	5.44 ± 1.43	$3.1 \pm 0.2 \pm 0.1 \substack{+0.5 \\ -0.3}$
Gulez et. al. [31]	$\pi^{+} + \pi^{0}$	> 16	2.07 ± 0.57	$3.1 \pm 0.3 \pm 0.1 \substack{+0.6 \\ -0.4}$
Okamoto et. al. [32]	$\pi^{+} + \pi^{0}$	> 16	1.83 ± 0.50	$3.3 \pm 0.4 \pm 0.1^{+0.6}_{-0.4}$