B Physics Results from the Tevatron: Lifetimes and Rare Decays

Jonathan Lewis Fermilab

XLIVth Rencontres de Moriond March 2009

B Hadrons: A Window on New Physics

- System of one heavy and one light quark
 - Accessible from theory
 - Heavy Quark Effective Theory (HQET)
 - Light degrees of freedom decouple from heavy-quark processes
 - Can avoid stepping in the brown muck that binds hadrons
 - Spectator decays dominate
 - Predictions of lifetimes and decay rates
 - Shorter lifetimes indicate additional (non-SM?) decay processes
 - Higher rates than expected from SM in rare modes indicates new physics
 - No tree-level diagram in SM

Lifetime Expectations

- Spectator diagrams dominant
- Non-spectator
 contributions to B⁰ and B_s
 - $\tau(B^+) = (1.06 \pm 0.02) \cdot \tau(B^0)$
 - $\tau(B_s) = (1.00 \pm 0.01) \cdot \tau(B^0)$
- Helicity suppression removed for baryons
 - $\tau(\Lambda_b) = (0.88 \pm 0.05) \cdot \tau(B^0)$

Values: C. Tarantino *et al.,* hep-ph/0310241

Measuring Lifetimes at the Tevatron

- Large signals, but large background
 - 50 mb hadronic cross section; 5 μb B cross section
- Trigger is key
 - Dimuon
 - Very clean but low yields (Product branching ratios $\sim 10^{-5}$)
 - Single lepton
 - Large yield, but also large backgrounds
 - Precision suffers from missing neutrino
 - Displaced tracks (CDF's SVT)
 - Large yields and full reconstruction
 - Decay length distribution sculpted by trigger

• Focus on B_s , Λ_b , B_c -- Not accessible at e⁺e⁻ factories

$\Lambda_{\rm b}$ Lifetime

- Hadronic Decays
 - $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$
 - $\Lambda_c^+ \rightarrow pK^-\pi^+$
- Two-track trigger
 - Two tracks
 100μm<d₀<1mm
 - $L_{xy} < 200 \mu m$
 - 2°<∆φ<90°
 - Kinematic cuts depend on running conditions

- Extensive tuning of Monte Carlo
 - Trigger performance
 - Match kinematics in data

Λ_b Candidates

- Sample composition fixed from mass distribution
- Signal: 2927±58

Lifetime Fit

- PDF is convolution of
 - Exponential
 - ct resolution PDF
 - Trigger efficiency
- Result
 - $c\tau = 422.8 \pm 13.3 \pm 8.8 \ \mu m$
 - Systematic dominated by trigger modeling

Comparisons

Measurement as good as prior world average

- Discrepancy between
 CDF's prior measurement and earlier results remains
- New result consistent with both and expectation

 $\tau(\Lambda_{\rm b})/\tau({\rm B}^0) = 0.922 \pm 0.039$

B_s Lifetime (CDF)

• 2200 events

$$c\tau = 419.1 \pm 13.2 \pm {}^{8.4}_{7.5} \,\mu m$$

K factor

B_s Lifetime: $J/\psi \phi$

- Use angular information to measure three polarization amplitudes
- Extract lifetimes for CP-odd (heavy) and CP-even (light) eigenstates
- Mean lifetime: D0: $c\tau$ =445.8±18.0±8.4 µm CDF: $c\tau$ =459±12±3 µm
 - Results are mean of heavy and light states.
 - Difference from flavor specific measurement smaller than error given limits on Γ_s

Lifetimes and Rare Decays

B_s Lifetime: Summary

- Both newer measurements greater than earlier average
 - Strongly weighted by semileptonic channel from DØ
- Still have $\sim 2\sigma$ discrepancy between data and expectation $\tau(B_s) \approx \tau(B^0)$

Rare Decays: $B_s \rightarrow \mu^+ \mu^-$

- FCNC forbidden at tree level in Standard Model
 - Expect 3.5±0.5×10⁻⁹
 - BR(B_d $\rightarrow \mu^+\mu^-) \sim 10^{-10}$
 - Suppressed by $|V_{td}/V_{ts}|^2$
- Two experiments use similar methods
 - Multivariate selection
 - Kinematic, vertex and candidate isolation quantities
 - DØ likelihood ratio, CDF neural net
 - Normalize to $B^+ \rightarrow J/\psi K^+$

 $B_s \rightarrow \mu^+ \mu^-$: Results (2 fb⁻¹)

DØ: <9.3×10⁻⁸ (95% CL)

CDF: <5.8×10⁻⁸ (95% CL)

Lifetimes and Rare Decays

$B_s \rightarrow \mu^+ \mu^-$: Significance & Outlook

- Expect sensitivity to get better
 - DØ: detector and analysis improvements
 - CDF: tighter rejection possible with more data
- Expect combined limit
 O(10⁻⁸) by end of Run II
 - Significant constraints on New Physics

CDF: $B_{d,s} \rightarrow e^+ \mu^-, e^+ e^-$

- $B_{d,s} \rightarrow e^+ \mu^-$ essentially forbidden in SM
 - Possible with SUSY, ED, or lepto-quarks
- BR(B \rightarrow e⁺e⁻)~10⁻¹⁵ expected in SM
 - relative to $B \rightarrow K\pi$ in displaced track sample

 $\Lambda_{\rm b}^{0} \rightarrow pK^{-}, p\pi^{-}$

- Displaced track sample
- Use mass and particle ID (dE/dx) in likelihood fit
- Normalize to $B^0 \rightarrow K\pi$
- Use $\pi\pi$ mass to for consistent treatment across modes

- BR($\Lambda_b^0 \rightarrow pK^-$)= 3.1±0.6±0.7×10⁻⁶ BR($\Lambda_b^0 \rightarrow p\pi^-$)= 5.0±0.7±1.0×10⁻⁶
 - Factor 2 smaller with CDF value of f_{Λ}/f_b
 - Inconsistent with R-parity violating MSSM at O(10⁻⁴)
- $A_{CP}(\Lambda_b^0 \rightarrow pK^-) = 0.37 \pm 0.17 \pm 0.03$ $A_{CP}(\Lambda_b^0 \rightarrow p\pi^-) = 0.03 \pm 0.17 \pm 0.05$
 - Consistent with SM expectation of ~0.3

Conclusions

- The study of bottom hadrons continues to put physics beyond the Standard Model in a box
- That box will get smaller soon
 - Today's results are 1-2 fb⁻¹
 - 5 fb⁻¹ on tape and colleting ~50 pb⁻¹/week