SuperB http://www.pi.infn.it/SuperB/

Recontres de Moríond XLIV, La Thuíle, Italy 7-14th March 2009.

SuperB in a nutshell

Physics potential of SuperB

- New Physics Search Capabilities
 - Lepton Flavour & CP Violation in τ decay
 - Rare Decays
 - Fundamental Symmetries & Higgs/dark matter
- Standard Model measurements.
- Current Status
- Conclusion

SUPERB (In a Nutshell)

Site: Tor Vergata Campus (Rome II)

- Asymmetric energy e⁺e⁻ collider
- Low emittance operation (like LC)
- Polarised beams
- Luminosity 10³⁶ cm⁻²s⁻¹
 - 75ab⁻¹ data at the Y(4S)
 - Collect data at other \sqrt{s}
 - Start data taking as early as 2015
- Crab Waist technique developed to achieve these goals
- International Community

Geographical distribution of CDR signatories.

Precision B, D and τ decay studies and spectroscopy

- New Physics in loops
 - 10 TeV reach at 75ab⁻¹
 - Rare decays
 - $-\Delta S CP$ violation measurements
- Lepton Flavour & CP Violation in τ decay
- Light Higgs searches
- Dark Matter searches

http://www.pi.infn.it/SuperB/

- SuperB is a super flavour factory!
 - Hundreds of billions of B_u , B_d , D, τ decays with 5 years of data taking:
 - 75ab⁻¹ at the Υ(4S).
 - Running at charm threshold: $\psi(3770)$.
 - And at other Y resonances.
- Lepton Flavour & CP Violation in τ decay.
- Rare Decay constraints on new physics.
- Fundamental symmetries & Higgs/dark matter constraints:
 - Lepton Universality, CP, T, CPT.
- + Standard Model B, D and τ physics.

Lepton Flavor Violation in τ decay

- $\tau \rightarrow \mu \gamma$ upper limit can be correlated to θ_{13} (neutrino mixing/CPV, T2K etc.) and also to $\mu \rightarrow e \gamma$.
- Complementary to flavour mixing in quarks.
- Golden modes:
 - $\tau \rightarrow \mu \gamma$ and 3μ .
- e⁻ beam polarization:
 - Lower background
 - Better sensitivity than competition!
- e+ polarization used later in programme.
- CPV in $\tau \rightarrow K_S \pi v$ at the level of ~10⁻⁵.
- Bonus:
 - Can also measure τ g-2 (polarization is crucial).
 - σ(g-2) ~2.4 ×10⁻⁶ (statistically dominated error).

Process	Expected 90% CL	4σ Discovery
	upper limited	Reach
${\cal B}(au o \mu \gamma)$	2×10^{-9}	5×10^{-9}
$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-10}	8.8×10^{-10}

Use $\mu \gamma/3I$ to distinguish SUSY vs. LHT.

Lepton Flavor Violation in τ decay

SuperB Sensitivity (75ab ⁻¹)				
Process	Sensitivity			
$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}			
$\mathcal{B}(\tau \to e \gamma)$	2×10^{-9}			
$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-10}			
$\mathcal{B}(\tau \to eee)$	2×10^{-10}			
$\mathcal{B}(\tau \to \mu \eta)$	4×10^{-10}			
$\mathcal{B}(\tau \to e\eta)$	6×10^{-10}			
$\mathcal{B}(\tau \to \ell K^0_s)$	2×10^{-10}			

- LHC is not competitive (Re: both GPDs and LHCb).
- SuperB sensitivity ~10 50× better than NP allowed branching fractions.

Rare Decays

No one smoking gun... rather a 'golden matrix'.

X =	Golden Channel	H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed
0 =	Observable effect	high $tan\beta$	$_{\rm FV}$	FV (1-3)	FV (2-3)	Z-penguins	currents
	$BR(B \to X_s \gamma)$		Х		0		0
	$A_{CP}(B \to X_s \gamma)$				X		0
	${ m BR}(B o au u)$	X-CKM					
	$BR(B \to X_s l^+ l^-)$				0	0	0
	$BR(B \to K \nu \overline{\nu})$				0	Х	
	$S(K_S\pi^0\gamma)$						Х
	β (ΔS)			X- CKM			X

Need to measure all observables in order to select/eliminate new physics scenarios!

Mode	Sensitivity		
	Current	$10~{\rm ab^{-1}}$	75 ab^{-1}
$\mathcal{B}(B \to X_s \gamma)$	7%	5%	3%
$A_{CP}(B \to X_s \gamma)$	0.037	0.01	0.004 – 0.005
$\mathcal{B}(B^+ \to \tau^+ \nu)$	30%	10%	3 - 4%
$\mathcal{B}(B^+ \to \mu^+ \nu)$	Х	20%	5-6%
$\mathcal{B}(B \to X_s l^+ l^-)$	23%	15%	4-6%
$A_{\rm FB}(B \to X_s l^+ l^-)_{s_0}$	X	30%	4-6%
$\mathcal{B}(B \to K \nu \overline{\nu})$	Х	Х	16–20%
$S(K^0_S\pi^0\gamma)$	0.24	0.08	0.02 - 0.03

•The golden modes

- will be measured by SuperB.
- `smoking guns' for their models.

•Measurements not yet made are denoted by X.

With 75ab⁻¹ we can
Reach above a TeV with B→ τν
See B→Kνν

Rare Decays : SUSY CKM

Flavour couplings in squark sector (like CKM)

and similarly for $M^2{}_{\widetilde{u}}$

- NP scale: m_{q̃}
- Flavour and CP violation coupling: $(\Delta_{ij}^{d})_{AB}/m_{\tilde{q}}^{2}$
- Why?
 - Non trivial CKM & MSW, so it is natural for squarks to mix!
 - Unnatural to have couplings ~0 and a low mass scale.
- e.g. MSSM: 124 parameters (160 with v_R).
 - Most are flavour couplings!

Rare Decays : SUSY CKM

• Couplings are $\left(\delta_{ij}^{q}\right)_{AB} = \left(\Delta_{ij}^{q}\right)_{AB} / m_{\tilde{q}}^{2}$ where A, B=L, R, and *i*, *j* are squark generations.

See (or rule out) a sparticle signal at TeV scale with 75ab⁻¹.

Searching for a Light Higgs & Dark Matter

- Many NP scenarios have a possible light Higgs Boson (e.g. 2HDM).
- Can use $Y(nS) \rightarrow I^+I^-$ to search for this.
 - Contribution from A⁰ would break lepton universality

M. A. Sanchis-Lozano, hep-ph/0510374, Int. J. Mod. Phys. A19 (2004) 2183

NMSSM Model with 7 Higgs Bosons

Physical Higgs bosons: (seven)

2 neutral CP-odd Higgs bosons (A_{1,2})
3 neutral CP-even Higgs bosons (H_{1,2,3})
2 charged Higgs bosons (H[±])

• A₁ could be a light DM candidate.

 Can expect to record at least 300fb⁻¹ recorded at the Υ(3S) in SuperB.

• This is $10 \times$ the BaBar data sample at the $\Upsilon(3S)$.

Possible NMSSM Scenario

A₁ ~ 10 GeV

 $H_1 \sim 100 \text{ GeV}$ (SM-like)

Others ~300 GeV (almost degenerate)

Gunion, Hooper, McElrath [hep-ph:0509024] McElrath [hep-ph/0506151], [arXiv:0712.0016]

Searching for Dark Matter

- SM Expectation: $\mathcal{B}(\Upsilon(1S) \rightarrow \nu \overline{\nu}) = (9.9 \pm 0.5) \times 10^{-6}$
- NP extension: $\mathcal{B}(\Upsilon(1S) \rightarrow \chi\chi)$ up to 6×10^{-3}
- SuperB should be able to provide a precision constraint on this channel.
- Belle has 7fb-1 at the $\Upsilon(1S)$, SuperB will have hundreds of fb⁻¹.

 Possible to search for the effect of DM at the B-factories for most modes:

- $\Upsilon \rightarrow invisible$ $B^+ \to K^+ + invisible$ $K^+ \rightarrow \pi^+ + invisible$
- $J/\Psi \rightarrow invisible$ $\begin{array}{ll} \eta \to invisible & \Upsilon \to \gamma + invisible \\ \uparrow + + invisible & \Upsilon \to \gamma A_1, A_1 \to \tau^+ \tau^- \end{array}$ $J/\Psi \rightarrow \gamma A_1$

hep-ph/0506151, hep-ph/0509024, hep-ph/0401195, hep-ph/0601090, hep-ph/0509024, hep-ex/0403036 ...

ΔS measurements (CPV)

- β=(21.1±0.9)° from Charmonium decays.
- Look in many different b→s and b→d decays for sin2β deviations from the SM:

Standard Model measurements.

B Physics at Y(4S)

Observable	B Factories (2 ab ⁻¹)	SuperB (75 ab
$sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)
$\cos(2\beta) (J/\psi K^{*0})$	0.30	0.05
$sin(2\beta)$ (Dh ⁰)	0.10	0.02
$\cos(2\beta)$ (Dh ⁰)	0.20	0.04
$S(J/\psi \pi^0)$	0.10	0.02
$S(D^{+}D^{-})$	0.20	0.03
$S(\phi K^0)$	0.13	0.02 (*)
$S(\eta' K^0)$	0.05	0.01(*)
$S(K_{s}^{0}K_{s}^{0}K_{s}^{0})$	0.15	0.02 (*)
$S(K_{s}^{0}\pi^{0})$	0.15	0.02 (*)
$S(\omega K_s^0)$	0.17	0.03 (*)
$S(f_0K_s^*)$	0.12	0.02 (*)
$\gamma (B \rightarrow DK, D \rightarrow CP \text{ eigenstate})$	es) $\sim 15^{\circ}$	2.5°
γ ($B \rightarrow DK$, $D \rightarrow$ suppressed st	ates) $\sim 12^{\circ}$	2.0°
$\gamma (B \rightarrow DK, D \rightarrow multibody sta$	ates) $\sim 9^{\circ}$	1.5°
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$
$\alpha (B \rightarrow \pi \pi)$	$\sim 16^{\circ}$	3°
$\alpha (B \rightarrow \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	20
α (combined)	$\sim 6^{\circ}$	$1{-}2^{\circ}$ (*)
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K_{c}^{0}\pi^{\mp})$	20°	5°
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
V ₄ (inclusive)	1% (*)	0.5% (*)
V d (exclusive)	8% (*)	3.0% (*)
$ V_{ub} $ (exclusive)	870 (*)	3.0% (*)
$ V_{ub} $ (inclusive)	870 (*)	2.0% (*)
$\mathcal{B}(B \rightarrow \tau \nu)$	20%	4% (†)
$\mathcal{B}(B \to \mu\nu)$	visible	5%
$\mathcal{B}(B \rightarrow D\pi \nu)$	10%	2%
D(D / D / V)	1070	270
$\mathcal{B}(B \rightarrow \rho \gamma)$	15%	3% (†)
$\mathcal{B}(B \rightarrow \omega \gamma)$	30%	5%
$A_{CP}(B \rightarrow K^* \gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b \rightarrow s\gamma)$	0.012 (†)	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K_{\sigma}^{0}\pi^{0}\gamma)$	0.15	0.02 (*)
$S(a^0 \gamma)$	nossible	0.10
~(P 1)	Possinie	0.10
$A_{CP}(B \rightarrow K^* \ell \ell)$	7%	1%
$A^{FB}(B \rightarrow K^*\ell\ell)s_0$	25%	9%
$A^{FB}(B \rightarrow X_s \ell \ell) s_0$	35%	5%
$\mathcal{B}(B \rightarrow K \nu \overline{\nu})$	visible	20%
$\mathcal{B}(B \rightarrow \pi \nu \bar{\nu})$	-	nossible
~~~~~ / /////		DOMIDIC

Rare Charm Decays: 1 month at ψ(3770)			
Channel	Sensitivity		
$D^0 \rightarrow e^+ e^-, \ D^0 \rightarrow \mu^+ \mu^-$	$1 \times 10^{-8}$		
$D^0 \rightarrow \pi^0 e^+ e^-, \ D^0 \rightarrow \pi^0 \mu^+ \mu^-$	$2 \times 10^{-8}$		
$D^0 \to \eta e^+ e^-, \ D^0 \to \eta \mu^+ \mu^-$	$3  imes 10^{-8}$		
$D^0 \rightarrow K^0_S e^+ e^-, D^0 \rightarrow K^0_S \mu^+ \mu^-$	$3 \times 10^{-8}$		
$D^+ \rightarrow \pi^+ e^+ e^-, \ D^+ \rightarrow \pi^+ \mu^+ \mu^-$	$1 \times 10^{-8}$		
$D^0 \rightarrow e^{\pm} \mu^{\mp}$	$1 \times 10^{-8}$		
$D^+ \to \pi^+ e^\pm \mu^\mp$	$1 \times 10^{-8}$		
$D^0 \to \pi^0 e^\pm \mu^\mp$	$2 \times 10^{-8}$		
$D^0 \rightarrow \eta e^{\pm} \mu^{\mp}$	$3 \times 10^{-8}$		
$D^0 \rightarrow K^0_s e^{\pm} \mu^{\mp}$	$3  imes 10^{-8}$		
$D^+ \rightarrow \pi^- e^+ e^+, \ D^+ \rightarrow K^- e^+ e^+$	$1 \times 10^{-8}$		
$D^+ \rightarrow \pi^- \mu^+ \mu^+, \ D^+ \rightarrow K^- \mu^+ \mu^+$	$1 \times 10^{-8}$		
$D^+ \to \pi^- e^\pm \mu^\mp, D^+ \to K^- e^\pm \mu^\mp$	$1 \times 10^{-8}$		

τ: LFV / CPV /					
Process	Sensitivity				
$\mathcal{B}(\tau \to \mu \gamma)$	$2 \times 10^{-9}$				
$\mathcal{B}(\tau \to e \gamma)$	$2 \times 10^{-9}$				
$\mathcal{B}(\tau \to \mu  \mu  \mu)$	$2 \times 10^{-10}$				
$\mathcal{B}(\tau \rightarrow eee)$	$2 \times 10^{-10}$				
$\mathcal{B}(\tau \to \mu \eta)$	$4\times 10^{-10}$				
$\mathcal{B}(\tau \to e\eta)$	$6  imes 10^{-10}$				
$\mathcal{B}(\tau \to \ell K^0_s)$	$2 \times 10^{-10}$				

Mode	Observable	$\Upsilon(4S)$	$\psi(3770)$	C
		$(75 \text{ ab}^{-1})$	$(300 \text{ fb}^{-1})$	5
$D^0 \rightarrow K^+ \pi^-$	$x'^2$	$3 \times 10^{-5}$		ല
	y'	$7\times 10^{-4}$		
$D^0 \rightarrow K^+K^-$	$y_{CP}$	$5 \times 10^{-4}$		ر
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x	$4.9\times 10^{-4}$		$\leq$
	y	$3.5\times 10^{-4}$		- <del>-</del>
	q/p	$3  imes 10^{-2}$		
	$\phi$	$2^{\circ}$		ы С
$\psi(3770) \rightarrow D^0 \overline{D}^0$	$x^2$		$(1-2) \times 10^{-5}$	
	y		$(1-2) \times 10^{-3}$	
	$\cos \delta$		(0.01 - 0.02)	

See CDR and Valencia report for details of the SM measurements and other possible NP searches.

#### **B** Physics at Y(5S)

Observable	Error with 1 $ab^{-1}$	Error with 30 $ab^{-1}$
$\Delta\Gamma$	$0.16 \ {\rm ps}^{-1}$	$0.03 \ {\rm ps}^{-1}$
Γ	$0.07 \ {\rm ps}^{-1}$	$0.01 \ {\rm ps^{-1}}$
$\beta_s$ from angular analysis	$20^{\circ}$	$8^{\circ}$
$A^s_{SL}$	0.006	0.004
$A_{\rm CH}$	0.004	0.004
${\cal B}(B_s\to \mu^+\mu^-)$	-	$<8\times10^{-9}$
$V_{td}/V_{ts}$	0.08	0.017
$\mathcal{B}(B_s \to \gamma \gamma)$	38%	7%
$\beta_{s}$ from $J/\psi\phi$	$10^{\circ}$	3°
$\beta_s$ from $B_s \to K^0 \bar{K}^0$	$24^{\circ}$	11°

Adrian Bevan



# **Current Status**

- Work toward realizing the experiment is starting!
  - Prepare Technical Design Reports now end 2010.
  - Construct experiment 2011-2015.

... then start to take data!

- Just started work toward Technical Design Reports.
  - Fast and GEANT simulations available to optimize detector studies for physics goals!
  - Detector and accelerator R&D ongoing.
  - Preparing
    - A Technical Proposal for end of 2009.
    - A Technical Design Report for end of 2010/start 2011.
  - Physics workshop at Warwick April 2009.
  - Plenty of work to do…
- You're welcome to join the effort!
  - contact <u>giorgi.superb@pi.infn.it</u> for more information.



# Conclusion

- SuperB measures a unique set of new physics observables to high precision.
  - Measure a golden matrix to test new physics signatures.

### <u>Scenarío 1</u>

- LHC finds new physics after 2010...
  - But what exactly has it found...? ⇒ SuperB pins it down!



# Conclusion

- SuperB measures a unique set of new physics observables to high precision.
  - Measure a golden matrix to test new physics signatures.

### <u>Scenarío 1</u>

- LHC finds new physics after 2010...
  - But what exactly has it found...? ⇒ <u>SuperB pins it down</u>!

### <u>Scenarío II</u>

- LHC doesn't find new physics!
  - $\Rightarrow$ SuperB indirectly searches far beyond the reach of LHC: ~ 100TeV.
    - c.f. 1970: GIM mechanism and  $K_L \rightarrow \mu^+ \mu^-$ .
    - c.f. 1973: 3rd generation from CKM matrix.
    - c.f. 90s  $\Rightarrow$  heavy top quark mass from  $\Delta m_d$ .
    - Z⁰ width constraints on the SM Higgs ...?



# Conclusion

- SuperB measures a unique set of new physics observables to high precision.
  - Measure a *golden matrix* to test new physics signatures.

### <u>Scenarío 1</u>

- LHC finds new physics after 2010...
  - But what exactly has it found...? ⇒ <u>SuperB pins it down</u>!

### <u>Scenarío II</u>

- LHC doesn't find new physics!
  - $\Rightarrow$ SuperB indirectly searches far beyond the reach of LHC: ~ 100TeV.
    - c.f. 1970: GIM mechanism and  $K_L \rightarrow \mu^+ \mu^-$ .
    - c.f. 1973: 3rd generation from CKM matrix.
    - c.f. 90s  $\Rightarrow$  heavy top quark mass from  $\Delta m_d$ .
    - Z⁰ width constraints on the SM Higgs ...?
- Either way round we need SuperB to unravel the mysteries of nature.
- + SuperB does all of the Standard Model measurements you'd expect.
  - and ... constrains SM errors for other NP searches; e.g.  $K_{L}^{0} \rightarrow \pi^{0} v \bar{v}$ .
- See <u>http://www.pi.infn.it/SuperB/</u>, CDR, and physics workshop report for more details: arXiv:0810.1312 and 0709.0451.



**Additional Material** 

### **Detector Layout – Reuse parts of Babar**





# Detector

- Simulation:
  - FastSim (validated on using geometry for BaBar)
    - Reproduces BaBar resolutions etc.
    - Change to SuperB geometry and boost for development of benchmark studies.
    - Then move to GEANT 4 for more detailed work.
  - GEANT 4 model of SuperB shown.
  - Using BaBar framework.
  - Draw on a decade of analysis experience from BaBar and Belle to optimize an already good design.



# SuperB footprint on Tor Vergata site



### Crab waist tests at DAΦNE



March 2009

Adrian Bevan



# Polarisation

- In a storage ring, particle spins naturally precess around the vertical fields of the arc dipoles, at a rate determined by the particle energy.
  - This means that vertical polarisation is naturally preserved, but longitudinal polarisation can be lost without preventive measures.
- For SuperB, there are two options to maintain longitudinal polarisation in the beam at the IP:
  - 1. Use solenoids opposite the IP, to rotate the spin by  $\pi$  around the longitudinal axis.
  - 2. Use solenoids or vertical bends to rotate between vertical and longitudinal spin before and after the IP.
- Option 2 will probably work best for the multi-GeV SuperB rings, but more studies are needed.





 With a source providing ~ 90% polarisation, it is expected that an average polarisation of 80% can be achieved for the e⁻ beam. e⁺ polarisation would be an upgrade...