Moriond EW Conference, La Thuile, March 10, 2009

FLAVOR VIOLATION IN SUSY

Recent opportunities for collider searches and *b*-physics.

Gudrun Hiller, Dortmund

Flavor Physics (Standard Model)

* Known matter comes in 3 generations i, j = 1, 2, 3.

$$\mathcal{L} \supset \bar{Q}_i i \not \! D Q_i - \bar{Q}_i (Y_u)_{ij} \langle h^C \rangle U_j - \bar{Q}_i (Y_d)_{ij} \langle h \rangle D_j \qquad \langle h \rangle \simeq 174 \text{ GeV}$$

* Quarks mix and change flavor.

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 & \lambda & \lambda^3 \\ -\lambda & 1 & \lambda^2 \\ -\lambda^3 & -\lambda^2 & 1 \end{pmatrix}; \quad \lambda \simeq 0.22$$

The third generation is decoupled from the first two!

- * Today, masses and mixings are known input (still improving).
- * Quark Yukawas are hierarchical $m_u/m_t \sim 10^{-5}$ (this is a puzzle).

Why haven't we seen NP in FCNC yet?

* FCNCs are suppressed in SM by mixing, loop (and GIM for external c oder t)

$$\mathcal{A}_{\mathrm{SM}}(b \to q) \sim V_{tb}V_{tq}^* \cdot (m_t^2 - m_c^2)/m_W^2$$
 and CKM!

- * $\mathcal{A}_{\mathrm{NP}}(b \to q) \sim f \cdot (m_{\tilde{t}}^2 m_{\tilde{c}}^2)/\Lambda_{NP}^2$ $f = \tilde{V}\tilde{V}^{\dagger}$: NP flavor mixing
- * Data from, e.g., meson mixing: $|\mathcal{A}_{NP}| \lesssim |\mathcal{A}_{SM}|$ imply: (we assume as in SM $\mathcal{O}(1)$ mass splitting)
- A) $f \sim 1$: NP not connected to electroweak scale $\Lambda_{NP} \gg \sqrt{s_{LHC}}$.
- B) $f \lesssim 1$: largish contributions cancel; not every relevant observable measured yet \rightarrow rare decays, arg $(B_s \bar{B}_s)$.
- C) $f \sim f_{\rm SM} + \epsilon$ and $f_{\rm SM} = \lambda^n$: suppression similar to SM. With $\epsilon = 0$:

Minimal Flavor Violation (MFV)

Chivukula, Georgi '87; d'Ambrosio et al '02 non-symmetry based definitions: Ali,London '99; Buras² '00

What does MFV imply for SUSY? Simplification!

* The superpotential (N=1, unbroken R-parity) is MFV!

$$W_{MSSM} = QY_uH_uU + QY_dH_dD + LY_eH_dE + \mu H_dH_u$$

* SUSY-breaking with MFV-generational structure:

$$\tilde{Q}^{\dagger}\tilde{m}_{Q}^{2}\tilde{Q} + \tilde{U}^{\dagger}\tilde{m}_{U}^{2}\tilde{U} + \tilde{D}^{\dagger}\tilde{m}_{D}^{2}\tilde{D} + (A_{u}\tilde{Q}H_{u}\tilde{U}^{*} + A_{d}\tilde{Q}H_{d}\tilde{D}^{*} + h.c.)$$

$$\tilde{m}_{Q}^{2} = \tilde{m}^{2}(a_{1}\mathbf{1} + b_{1}Y_{u}Y_{u}^{\dagger} + b_{2}Y_{d}Y_{d}^{\dagger})$$

$$\tilde{m}_{U}^{2} = \tilde{m}^{2}(a_{2}\mathbf{1} + b_{5}Y_{u}^{\dagger}Y_{u})$$

$$\tilde{m}_{D}^{2} = \tilde{m}^{2}(a_{3}\mathbf{1} + b_{6}Y_{d}^{\dagger}Y_{d})$$

$$A_{u} = A(a_{4}\mathbf{1} + b_{7}Y_{d}Y_{d}^{\dagger})Y_{u}$$

$$A_{d} = A(a_{5}\mathbf{1} + b_{8}Y_{u}Y_{u}^{\dagger})Y_{d}$$

D'Ambrosio et al '02

 $b_i \equiv 0$: SUSY breaking is flavor blind

For low an eta, mAMSB becomes exactly flavor blind in the QIR-fixed point limit of Y_t 0902.4880 .

MFV Predictions for the MSSM

* Highly degenerate squarks of 1st and 2nd generation:

$$\Delta m/m_0 \sim \lambda_c^2/2; \quad \Delta m < 1 \text{ GeV}$$

* 3rd generation decoupled (via V_{CKM}).

Testing SUSY Flavor with FCNC-Loops: CP

- * Huge non-MFV effects thru non-CKM CP-phases: 8 asymmetries in angular distribution $\Gamma(q^2,\Theta_l,\Theta_K,\varphi)$ in $B\to (K^*\to K\pi)\mu^+\mu^-$ 4 CP-asys CP-odd: untagged $\bar{B}_s,B_s\to (\Phi\to KK)\mu^+\mu^-$ Bobeth et al 0805.2525
- * Three CP-asy's are T_N -odd and can be $\mathcal{O}(1)$ with NP Figs. from 0805.2525

Other recent works on angular analyses [hep-ph]: Bobeth et al 0709.4174, Egede et al 0807.2589, Altmannshofer et al 0811.1214

Testing MFV-SUSY with FCNC-Loops

* Predictive $\mathcal{O}(1)$ effects within MFV models if $\tan \beta$ largish.many works Here, AMSB ($m_{3/2}=40$ TeV) Figs from Allanach et al 0902.4880

Analytical expressions for the full flavor structure, that is, a_i,b_j or $(\delta^q)_{ij}$, within mAMSB 0902.4880 .

Measuring MFV Mixing at Colliders

* In MFV, mixing between third and other generations is suppressed:

$$\tilde{m}_Q^2 = \tilde{m}^2 (a_1 \mathbf{1} + b_1 Y_u Y_u^{\dagger} + b_2 Y_d Y_d^{\dagger})$$

$$(\tilde{m}_Q^2)_{23} / \tilde{m}^2 \sim \lambda_b^2 V_{cb} V_{tb}^* \sim 10^{-5} \tan \beta^2$$

- * Such a tiny coupling can indeed be probed! GH,Nir '08 requirement: $\tilde{t} \to c \chi^0$ dominant decay & sufficiently suppressed rate.
- * Then, stop lifetime $\tau_{\tilde{t}} \sim \mathrm{ps} \, \left(\frac{m_{\tilde{t}}}{100 \, \mathrm{GeV}}\right) \left(\frac{0.03}{\Delta m/m_{\tilde{t}}}\right)^2 \left(\frac{10^{-5}}{Y}\right)^2$ is long $\Delta m = m_{\tilde{t}} m_{\chi^0}$, $Y_{\mathrm{MFV}} \sim \lambda_b^2 V_{cb}$, and yields a macroscopic decay length! trick: measure lifetime instead of branching ratio
- * This is a counterexample to the lore that colliders determine only masses, and mixings are measured in low energy experiments.

Fig from D0, 0803.2263 [hep-ex]

Long Live the Stop

* $\Delta m > m_b$ opens up tree level 4-body decays $\tilde{t} \to b \chi^0 l \nu$.

$$\frac{\Gamma(\tilde{t} \to b\chi^0 l\nu)}{\Gamma(\tilde{t} \to c\chi^0)} \approx \frac{g^6 |V_{tb}|^2}{2(4\pi)^4} \frac{(\Delta m - m_b)^8}{[Y(\Delta m)]^2 m_W^4 m_{\chi^+}^2}$$

solid curve: $\beta\gamma\tau_{\tilde{t}}>0.1mm$; dashed: $Y_{m\,i\,n}$ alignement; horizontal solid line $Y\simeq\lambda_c$ anarchy +extended R-symm.Fig:GH,Nir '08

light stop ingredient of EWK baryogenesis; supports coannihilation of relic density; stop NLSP in hypercharged anomaly mediation Dermisek et al'07, or large A-terms.

- The LHC will explore for the first time the scale of electroweak symmetry breaking. What are the flavor quantum numbers of new particles/SM partners?
- Already strong constraints: Either TeV-BSM accidentally small in measured K, D, B-observables, or there is an organizing principle such as MFV; or, we havent looked good enough at relevant observables yet → LHC(b), super flavor factories.
- Flavor has implications and opportunities for collider searches.
 The stop decay length measurement is just one new idea.
- If MFV is confirmed, the origin of flavor is most likely unrelated to the TeV-scale.