

KamLAND

Rencontres de Mariand March 13, 2

Lindley Winslow Lawrence Berkeley National Lab Massachusetts Institute of Technology

- Motivation.
- Some Details of the Experiment.
- Recent Results (Phys.Rev.Lett100:221803,2008).
- Low Background Phase the Future.

Precision Measurement of Neutrino Oscillation Parameters with KamLAND

S. Abe,¹ T. Ebihara,¹ S. Enomoto,¹ K. Furuno,¹ Y. Gando,¹ K. Ichimura,¹ H. Ikeda,¹ K. Inoue,¹ Y. Kibe,¹ Y. Kishimoto,¹ M. Koga,¹ Y. Konno,¹ A. Kozlov,¹ Y. Minekawa,¹ T. Mitsui,¹ K. Nakajima,^{1, *} K. Nakajima,¹ K. Nakamura,¹ M. Nakamura,¹ K. Owada,¹ I. Shimizu,¹ J. Shirai,¹ F. Suekane,¹ A. Suzuki,¹ Y. Takemoto,¹ K. Tamae,¹ A. Terashima,¹ H. Watanabe,¹ E. Yonezawa,¹ S. Yoshida,¹ J. Busenitz,² T. Classen,² C. Grant,² G. Keefer,² D.S. Leonard,² D. McKee,² A. Piepke,² M.P. Decowski,³ J.A. Detwiler,³ S.J. Freedman,³ B.K. Fujikawa,³ F. Gray,^{3,†} E. Guardincerri,³ L. Hsu,^{3,‡} R. Kadel,³ C. Lendvai,³ K.-B. Luk,³ H. Murayama,³ T. O'Donnell,³ H.M. Steiner,³ L.A. Winslow,³ D.A. Dwyer,⁴ C. Jillings,^{4,§} C. Mauger,⁴ R.D. McKeown,⁴ P. Vogel,⁴ C. Zhang,⁴ B.E. Berger,⁵ C.E. Lane,⁶ J. Maricie,⁶ T. Miletie,⁶ M. Batygov,⁷ J.G. Learned,⁷ S. Matsuno,⁷ S. Pakvasa,⁷ J. Foster,⁸ G.A. Horton-Smith,⁸ A. Tang,⁸ S. Dazeley,^{9,¶} K.E. Downum,¹⁰ G. Gratta,¹⁰ K. Tolich,¹⁰ W. Bugg,¹¹ Y. Efremenko,¹¹ Y. Kamyshkov,¹¹ O. Perevozchikov,¹¹ H.J. Karwowski,¹² D.M. Markoff,¹² W. Tornow,¹² K.M. Heeger,¹³ F. Piquemal,¹⁴ and J.-S. Ricol¹⁴

(The KamLAND Collaboration)

¹Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan ²Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA ³Physics Department, University of California, Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁴W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA ⁵Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA ⁶Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA ⁷Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA ⁸Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA ⁹Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA ¹⁰Physics Department, Stanford University, Stanford, California 94305, USA ¹¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ¹²Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Physics Departments at Duke University, North Carolina Central University, and the University of North Carolina at Chapel Hill ¹³Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA ¹⁴CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I, F-33175 Gradignan Cedex, France

Reactor Anti-neutrino Problem!

• Reactor experiments had not found a deficit of anti-neutrinos like that seen in the solar experiments.

Planning For KamLAND

- The Kamioka mine in Japan is a logical place to house such a experiment.
- Japan is the third largest producer of nuclear power.
- Most reactors right on the coast.

Calculating the Reactor Spectrum:

• Power companies provide number of fissions per isotope per day per reactor.

0.1

0.0

0

2

Ee+(MeV)

KamLAND: The Detector

A Kilo-Tonne Liquid Scintillator!

Electronics Hut

- Stainless Steel Sphere
 - 8.5m radius
 - 1325 17" PMTs
 - 554 20'' PMTs
 - Nylon Balloon
 - 6.5m radius
 - Separates BO and LS.
 - Water Cerenkov Veto
 - 225 20'' PMTs

KamLAND LS is 80% mineral oil, 20% psuedo-cumene, and 1.36 g/L PPO.

The Earth

Image By: Colin Rose and Dorlen Kindersley

Geophysics - Total Heat Flow

Bore-hole Measurements

• Conductive heat flow measured from bore-holes temperature and conductivity gradient.

Total Heat Flow

44.2±1.0TW or 31±1TW *

11

* Most recent analysis of same data.

- Heat is produced by the decay of ^{238}U (8TW), ^{232}Th (8TW) and ^{40}K (3TW).
- U and Th are lithofiles so they should be drawn to the crust.
- The U/Th Ratio is well constrained by measurements of chondritic meteorites.

Find the Anti-Neutrinos:

• Fiducial Volume Cut.

R < 5.5 m

- Time Between Prompt and Delayed: $0.5\mu s < \Delta T < 1000\mu s$
- Spatial Separation:

 $\Delta R < 2m$

- •Energy Cuts:
 - $2.6 \text{ MeV} < E_{\text{prompt}} < 8.5 \text{ MeV}$
 - $I.8 \text{ MeV} < E_{delayed} < 2.6 \text{ MeV}$
- Spallation Cuts
 - ➡ Any muon:

2ms veto.

- Well tracked muon:
 veto 2s over 3m cylinder.
- High Energy or poorly tracked muon,
 2s whole detector veto.

A New Analysis Method

Previous Geo-neutrino Analysis

Cut you would like to apply.

Construct the L-Selector Cut:

$$L_{ratio}(E_{prompt}) = \frac{f_{\bar{\nu}}}{f_{\bar{\nu}} + f_{accidental}}$$

- PDF for anti-neutrino event.
- Created from Monte Carlo.
- Function of E_d, dR, dT, R_p, R_d.

faccidental

 $f_{\bar{\nu}}$

- PDF for accidental event.
- Created from data.
- Function of E_d, dR, dT, R_p, R_d.

The Candidates:

• The advantage of the L-Selector is very visible in the dR vs. dT plot.

• The need to continue using a 6m fiducial volume cut is due to the high event rate on the balloon.

Improving these Results:

• Reduce fiducial volume systematic with full volume calibration system.

TABLE I: Estimated systematic uncertainties (%).

Fiducial Volume	4.7	Reactor power	2.1
Energy threshold	2.3	Fuel composition	1.0
Efficiency of cuts	1.6	$\overline{\nu}_e$ spectra [3]	2.5
Livetime	0.06	Cross section [5]	0.2
Total systematic uncertainty	7		6.5

arXiv:0903.0441v1 [physics.ins-det]

After 500 hours of Calibration Data: [E] 600 10³ 400 200 10² -200 10 -400 -600 600 X_{prime} [cm] -200 200 Reconstruction bias < 3cm

- Reconstruction bias < 3cm corresponds to a 1.8% fiducial volume uncertainty.
- Cross-check and extend with ¹²B/¹²N candidates as was done for previous result.

100

200

300

400

500

600 R [cm] Better Systematic Errors and Much More Data: TABLE I: Estimated systematic uncertainties relevant for the neutrino oscillation parameters Δm_{21}^2 and θ_{12} . The total uncertainty on Δm_{21}^2 is 2.0%, while the total uncertainty on the expected event rate (and mainly affecting θ_{12}) is 4.1%.

	Detector-related (%)	1.1	Reactor-related (%)	_
Δm^2_{21}	Energy scale	1.9	$\overline{\nu}_e$ -spectra [7]	0.6
Event rate	Fiducial volume	1.8	$\overline{\nu}_{e}$ -spectra	2,4
	Energy threshold	1.5	Reactor power	2.1
	Efficiency	0.6	Fuel composition	1.0
	Cross section	0.2	Long-lived nuclei	0.3

Run Time = 1491 Days

The Results:

• Unbinned fit in rate, shape and time with two flavors, earth matter effects, and the amplitude of the geo-neutrinos floating.

Expected No Osc - 2178 events Background - 276 +/- 23.5 events Observed - 1609 events

Disappearance Significance is greater than 8.5**o**.

Geo-Neutrino Result:

Allow fluxes to vary: U: 25 events Th: 36 events Fix Ratio U/Th to 3.9: U+Th: 73±27 events

Flux: (4.4±1.6)x10⁶ cm⁻²s⁻¹ Ref. Model: 4.14x10⁶ cm⁻²s⁻¹

A More Intuitive way to see Oscillations:

$$P_{e,e} = 1 - \sin^2 2\theta_{12} \sin^2 (1.27\Delta m_{12}^2 L/E)$$

L_o is the flux averaged reactor distance, 180 km.

KamLAND and Solar Contours:

The Purification System:

Current Status:

• First purification ran for 12 weeks starting May 2007.

- •Exchanged 1.4 volumes plus an additional 173m³.
- Pause for 6 months for blasting, (Lower background data and reactor power reduced).
- Second purification commenced in Spring of 2008.
- Second purification ended February 6, 2009.
- Exchanged 4855m³ or 4.1 volumes.

End of First Purification - A Shifter's View.

End of Second Purification - A Shifter's View

Back-up Slides Begin Now.

Calculate the cut efficiency:

• The is done for all cuts using the Monte Carlo for the anti-neutrino candidates.

Now apply 6m fiducial volume, dR < 2m, and this L_{cut} .

Backgrounds:

Background	Contribution
Accidentals	80.5 ± 0.1
⁹ Li/ ⁸ He	13.6 ± 1.0
Fast neutron & Atmospheric ν	<9.0
$^{13}C(\alpha,n)^{16}O G.S.$	157.2 ± 17.3
${}^{13}C(\alpha,n){}^{16}O {}^{12}C(n,n\gamma){}^{12}C (4.4 \text{ MeV } \gamma)$	6.1 ± 0.7
${}^{13}C(\alpha,n){}^{16}O 1^{st}$ exc. state (6.05 MeV e ⁺ e ⁻)	15.2 ± 3.5
13 C(α ,n) 16 O 2 nd exc. state (6.13 MeV γ)	3.5 ± 0.2
Total	276.1 ± 23.5

Improving these Results:

• Combination of new alpha cross section measurements and the deployment of a ²¹⁰Po¹³C calibration source reduce the uncertainty in this background.

11% uncertainty in the g.s.20% uncertainty in the excited states.

Spallation Products

lsotope	Half Life	Endpoint
n	200µs	2.2MeV
¹² B	20ms	13.4 MeV
¹² N	llms	17.4 MeV
⁸ He	I 20ms	10.6 MeV
⁹ Li	180ms	13.6 MeV
¹⁶ N	7.1s	10.4 MeV
¹¹ Be	13.8s	11.5 MeV
١١C	20.4min	0.96 MeV
⁷ Be	53days	0.86 MeV

Parameter Space:

PRL 94, 081801 (2005)

The Solar Neutrino Problem

The Solution - A Purification System:

How it works:

