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The Challenge
The universe contains baryons, 
but essentially no antibaryons.

Standard cosmology: Any initial 
baryon – antibaryon asymmetry 

would have been erased.

nB
nγ

= 6 ×10−10 ;
nB 
nB

<<<1

How did                         
?

nB = nB nB >> nB 
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nB = nB nB >> nB Sakharov:                         
requires CP.

The CP in the quark mixing 
matrix, 

seen in B and K decays, leads to 
much too small a B–B asymmetry.

If quarkquark CP cannot generate 
the observed B–B asymmetry, 
can some scenario involving 

leptonsleptons do it?

The candidate scenario: 

Leptogenesis.
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The See-Saw Mechanism

ν

N
Very 
heavy 
neutrino

Familiar 
light 
neutrino

}

{

The very heavy neutrinos N would 
have been made in the hot Big Bang.

Leptogenesis The General Idea
Leptogenesis is an outgrowth of the most popular 
theory of why neutrinos are so light —

Yanagida; 
Gell-Mann, Ramond, Slansky; 

Mohapatra, Senjanovic; 
Minkowski
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If ν oscillation violates CP, then quite likely so does N 
decay. In the See-Saw, these two CP violations have a 
common origin: One Yukawa coupling matrix, y. 

Then, in the early universe, we would have had different 
rates for the CP-mirror-image decays –

N → l + ϕ+ and N → l + ϕ–

This produces a universe with 
unequal numbers of leptons and antileptons.

The heavy neutrinos N, like the light ones ν, are 
Majorana particles. Thus, an N can decay into l or l+.

+

Standard-Model Higgs

Leptogenesis — Step 1
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There is now a Baryon Asymmetry.

Leptogenesis — Step 2
The Standard-Model Sphaleron process, 

which does not conserve Baryon Number B, 
or Lepton Number L, but does conserve B – L, acts.

Bi = 0
Li ≠ 0

B f ≅ −
1
3

Li

L f ≅
2
3

Li ≅ −2B f

Sphaleron 
Process

Initial state 
from N decays

Final state
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The Yukawa couplings yjk cause —

Leptogenesis In 
Greater Depth

    
L new = −

Mk
2

NkR
cNkR

k=1

3
∑ − y jk ν jL ϕ0 − l jLϕ−⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ NkR

j, k=1

3
∑ + h.c.

Yukawa couplings

SM Higgs 
doublet 

Mass of Nk

SM lepton 
doublet

The see-saw model adds to the Standard Model  —

  Nk → l j
m + ϕ± Nk → ν j + ϕ0( )

( )

and .

IW = 0
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CP In N Decay
All CP-violating phases must come 
from the Yukawa coupling matrix y.

Tree – loop interferences lead to CP. Example:

N1

ϕ+

yj1

lj l
β

yn1
* yn2

l

n

+

ϕ–

N1 N2

lj

ϕ+

yj2+

 
Γ N1 → l j

− + ϕ+( )− Γ N1 → l j
+ + ϕ−( )∝ℑm y j1

* yn1
* y j2yn2( )
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Simplest picture:

The leptonic asymmetry comes from decay of the 
lightest N, N1 , and the final lepton flavors, e, μ, and 
τ, may be treated identically. 

Then, summing over the final lepton flavors, the CP 
asymmetry is —

ε ≡
Γ N1 → Lφ( )− Γ N1 → L φ ( )
Γ N1 → Lφ( )+ Γ N1 → L φ ( )

=
1

8π
1

y y( )11
ℑm { y y( )1m}2[ ]K Mm

2

M1
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

m
∑

ε
 

~ y2/10

Kinematical 
function

nB nγTo explain             ∼
 

10–9 requires ε
 

~ 10–6.
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The N Masses Required 
For Leptogenesis 

After the EW phase transition (which is after the Nk 
have decayed),                            . Then —ϕ0

0
≡ v ≅ 250 GeV

νL yϕ0 NR νL yv( )NR = νL MDNR

Neutrino Dirac 
mass matrix

In the see-saw picture, where the N masses 
are >> MD , the light ν

 
masses Mν

 

are —

Mν
 

∼
 

MD
2/MN ∼

 
(yv)2/MN ∼

 
10–1eV.
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Mν
 

∼
 

MD
2/MN ∼

 
(yv)2/MN ∼

 
10–1eV.

ε
 

~ y2/10 ~ 10–6

For leptogenesis, we required that —

Together, these requirements imply that —

MN ~ 109 GeV.

Leptogenesis requires very heavy neutrinos, 
far beyond the range of LHC.
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Leptogenesis and CP 
In Light ν

 
Oscillation

In a basis where the charged-lepton mass matrix is 
diagonal, our Yukawa coupling matrix y is the 
only source of CP violation among the leptons.

Though MD , the CP phases in y feed 
into the leptonic mixing matrix U. 

Through U, these phases lead to 
CP in light neutrino oscillation. 
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Electromagnetic Leptogenesis
(Nicole Bell, B.K., 

Sandy Law) 
Suppose new physics at a high mass scale Λ > MN 
leads to the electromagnetic N decay mode —

N → ν
 

+ γ
 

Toy Model

N → L + ϕ
 

+ (γ
 

or Z or W)
More realistic; 
respects SM 

conservation laws

or the mode —

Emitted in standard 
leptogenesis
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Q: If so, could it be successful if MN ∼
 

1 TeV, 
within range of the LHC, instead of ∼

 
109 GeV?

Q: Could CP in such decays be a successful 
alternative to the standard leptogenesis scenario? 

The N → ν
 

+ γ
 

Toy Model

Transition magnetic and 
electric dipole moments
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No CP In AnyAny Decays 
In Lowest Order

Tree-level interference between an Electric DM 
and a Magnetic DM cannot lead to —

Γ Nk → ν j + γ( )≠ Γ Nk → ν j + γ( )

There can nevernever be a difference between 
the rates for CP-conjugate decay modes 

in first order in the Hamiltonian.

.
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If T ≡ i(S – 1) is the transition operator for 
the decay Q → a1 + a2 + …, 

CPT – invariance

a1 p1, λ1( )a2 p2, λ2( )... T Q Jz( )
2

= a1 p1, − λ1( )a2 p2, − λ2( )... T Q −Jz( )
2

Helicity Spin projection

To first order in the Hamiltonian H, T = H.  Then T  = T.

Then —

Γ Q → a1 + a2 + ...( )= Γ Q → a1 + a2 + ...( )
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CP In the N → ν
 

+ γ
 

Toy Model 
From Tree – Loop Interference

The assumed effective EM coupling of the neutrinos is —

 
−L EM−Toy =

1
Λ

ν jLσαβ λ jkNkRFαβ
j,k=1

3
∑ + h.c.

Dimensionless dipole 
coupling constant

EM field
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An example of tree-loop interference:

Γ Nk → ν j + γ( )− Γ Nk → ν j + γ( )∝ℑm λ jk
* λnk

* λnmλ jm( )

+

γ

λjk λnk
* λnm λjm

This model leads to a CP asymmetry ε rather similar 
to the one from standard leptogenesis, with y ⇒ λ.

The CP phases are now in λ.

EM leptogenesis can succeed.
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CP In the 
N → L + ϕ

 
+ (γ

 
or Z or W) Model 

From Tree – Loop Interference

The effective “EM” interaction is now —

 
−L"EM" =

1
Λ2 L jLσαβ λ jk

' Bαβ + λ jk
' τ •Wαβ[ ]ϕNkR

j,k=1

3
∑ + h.c.∼

Higgs doubletLepton doublet

IW = 0 gauge field IW = 1 gauge field

This            N decays such as N → l– + φ0 + W+
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An example of tree-loop interference:

+

This interference and its toy model counterpart lead to 
CP asymmetries ε

 
related by —

ε"EM" λ'( )=
Mk
8πΛ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

εToy−Model λ( ) .

Apart from the suppression factor, the “EM” and toy 
models give similar asymmetries. Hence, the “EM” model 

and standard leptogenesis give similar asymmetries.
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The New EM Physics and the 
Masses of the Light Neutrinos

Once              , L“EM” leads to —ϕ0
0

≠ 0

Dirac mass, leading to 
Majorana mass mν

A Majorana mass mν
B

g'

EM leptogenesis and the light ν masses are connected.
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Γ1 =
1

8π
y y( )11M1 Γ1 =

1
2π

λ' λ'( )11
M1

M1
2

8πΛ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

ε 1
8π

ℑm y y( )1m
2

y y( )11

M1
Mm

∼ ε 1
2π

ℑm λ' λ'( )1m

2

λ' λ'( )11

M1
Mm

M1
2

8πΛ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

∼

mν yT MN
−1y ϕ 2

∼ mν
A λ'T MN

−1λ' ϕ 2 g'

16π 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

∼

mν
B λ'T MN λ'

Λ2 ϕ 2 1
16π 2∼

Standard Electromagnetic
A Comparison
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A Specific Example

Disregarding matrix structure, 

Λ ∼
 

10M2 ∼
 

20M1 and λ′ ∼ 35 gives ε ∼
 

10–6.

With these parameters, mν
B dominates the light neutrino 

masses, whose value, ∼
 

0.1 eV, requires that —

M1 ∼
 

1013 GeV.

Suppose the new “EM” interactions dominate over 
the Yukawa interactions of standard leptogenesis.

Like standard leptogenesis, EM leptogenesis requires 
that the heavy neutrinos N be far above the LHC range.
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Our Two Questions

Q: Could CP in EM decays be a successful alternative 
to the standard leptogenesis scenario? 

A: Yes.

Q: If so, could it be successful if MN ∼
 

1 TeV, 
within range of the LHC, instead of ∼

 
109 GeV?

A: No.
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The Link Between the Baryon 
Asymmetry and Light ν

 
CP

In standard leptogenesis, all leptonic CP 
comes from the Yukawa coupling matrix y.

CP in light ν
 

oscillation and the CP that led to the 
Baryon Asymmetry are linked. 

One expects CP in both places or in neither.  

In EM leptogenesis, leptonic CP has a different source 
— the new “EM” interactions.

But CP in light ν
 

oscillation and the CP that led to the 
Baryon Asymmetry are still linked.
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The new EM couplings lead to neutrino masses.

If leptogenesis is driven by these new couplings, 
then the neutrino masses probably are too.

CP-violating couplings will lead to CP-violating 
mass matrices, which in turn will lead to CP 

violation in oscillation.

Experiments to look for CP in light ν oscillation 
are very strongly motivated.
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