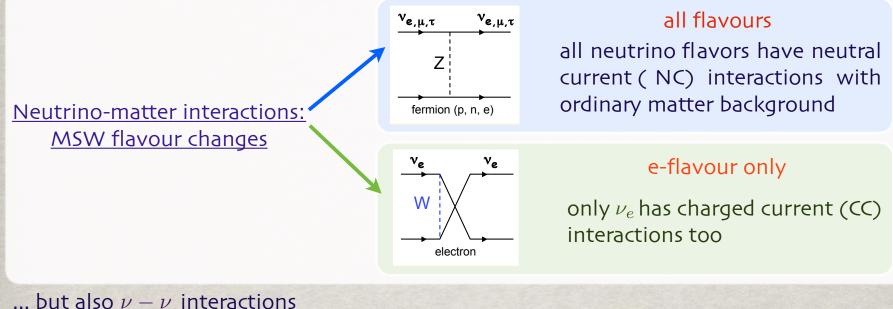
Collective flavour transitions of supernova neutrinos

> Irene Tamborra Department of Physics & INFN, Bari, Italy

> > Rencontres de Moriond EW 2009 La Thuile, March 13, 2009

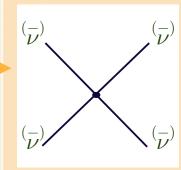
Outline

- Introduction
- * Self-interactions in 2-flavor scenario
- * Self-interactions in 3-flavour scenario
- Conclusions


This talk is based on work in collaboration with G.L. Fogli, E. Lisi, A. Marrone and A. Mirizzi:

- arXiv: 0808.0807 [hep-ph]
- arXiv: 0812.3031 [hep-ph].

See references therein for credit to previous relevant papers.


Introduction: neutrino interactions

In a core-collapse supernova not only ν -matter interactions are important ...

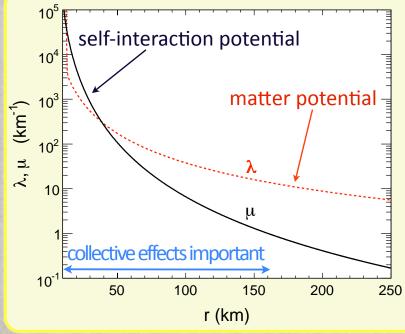
... Dut also $\nu = \nu$ interactions

Neutrino-neutrino interactions: non-linear flavour conversions

all flavours

when an high density of ν is present, $\nu - \nu$ interactions become not negligible. Self-interactions induce large, non-MSW flavour change. Different neutrino flavours with different energies are coupled in their evolution history.

Introduction: supernova relevance


Core-collapse supernovae can help us improving our knowledge about neutrino physics and astrophysics. In fact, as a consequence of neutrino self-interactions, oscillated neutrino fluxes show great sensitivity to:

- **\star** the non-zero mixing angle θ_{13}
- ★ the neutrino mass hierarchy

If the hierarchy is inverted and if $\theta_{13} \neq 0$, a full flavour conversion takes place. Otherwise oscillated fluxes are equal to non-oscillated ones.

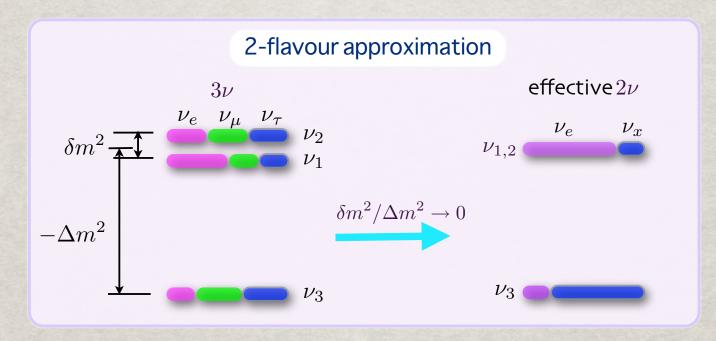
In the following we use the inverted hierarchy scenario with $\theta_{13} \neq 0$.

effects of neutrino self-interactions

We use three main frequencies:

- * the self-interaction potential $\mu = \sqrt{2}G_F(N + \bar{N})$
- \star the matter potential $\lambda = \sqrt{2}G_F N_e$
- **★** the vacuum frequency $\omega = (\Delta m^2/2E)$.

When

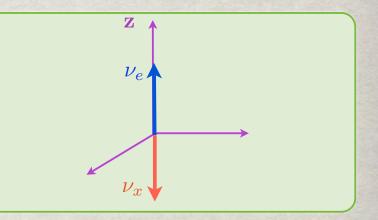

- μ > ω : self-interactions dominant [r < 100 km]
- $\lambda \sim \omega$: MSW effects leading [r > 100 km]
- $\lambda, \mu < < \omega$: vacuum oscillations

Self-interaction and matter potentials are chosen for t = 5 s after the core-bounce.

Plot taken from G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra, arXiv: 0808.0807 [hep-ph]

Self-interactions in 2-flavour scenario

Typical supernova neutrino energies [E ~ O(10) MeV] are below threshold for μ and τ production via CC. ν_{μ} and ν_{τ} behave in a similar way, and are often denoted by ν_x . As a consequence, in this context one may use the 2-flavour approximation, assuming $\delta m^2 = 0$.



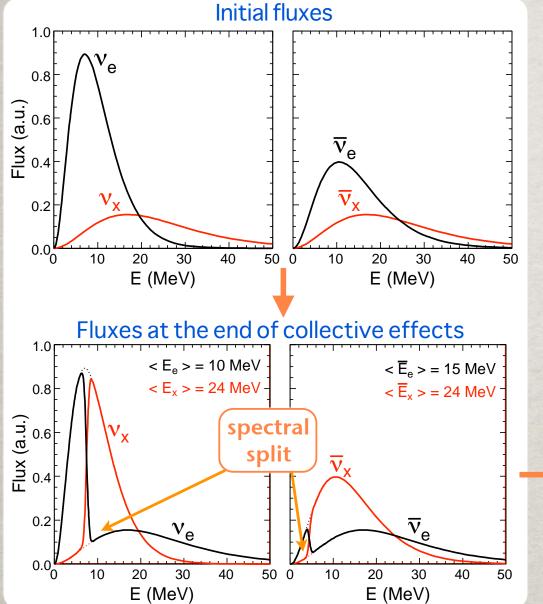
Some papers on collective effects in 2-flavour approximation:

- S. Pastor, G. Raffelt, arXiv: astro-ph/0207281
- H. Duan, G.M. Fuller, Y.Z. Qian, arXiv: astro-ph/0511275
- S. Hannestad, G. Raffelt, G. Sigl, Y.Y.Y. Wong, arXiv: astro-ph/0608695
- H. Duan, G.M. Fuller, J. Carlson, Y.Z. Quian, arXiv: astro-ph/0703776
- G. Raffelt, A.Y. Smirnov, arXiv: hep-ph/0705.1830
- G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, arXiv: hep-ph/0707.1998

Self-interactions in 2-flavour: evolution equations

For each neutrino energy mode i, decompose the 2 x 2 (anti)neutrino density matrix over Pauli matrices to get the Bloch 3-vector. In the flavour basis, the Bloch vectors associated to ν_e and ν_x are respectively aligned and anti-aligned with the z axis.

Considering the Bloch vector's evolution equation for each energy mode, one has to solve a large system of non-linear differential equations:


$$\begin{split} \dot{\mathbf{P}}_{i} &= \mathbf{H}_{i} \times \mathbf{P}_{i} = (+\omega_{i}\mathbf{B} + \lambda\mathbf{z} + \mu\mathbf{D}) \times \mathbf{P}_{i} \\ \dot{\overline{\mathbf{P}}}_{i} &= \overline{\mathbf{H}}_{i} \times \overline{\mathbf{P}}_{i} = (-\omega_{i}\mathbf{B} + \lambda\mathbf{z} + \mu\mathbf{D}) \times \overline{\mathbf{P}}_{i} \\ \textbf{Vacuum term} \\ (\text{with B function of} \\ \text{the mixing angle } \theta_{13}) \\ \end{split}$$
 matter term \\ \textbf{Self-interaction term with} \\ \mathbf{D} &= \sum_{i} \mathbf{P}_{i} - \overline{\mathbf{P}}_{i} \end{split}

The third component of the Bloch vector ($|\mathbf{P}_i| = 1$) is related to the survival probability:

 $P(\nu_e \to \nu_e) = \frac{1}{2} \left(1 + \frac{P_z^f}{P_z^i}\right)$

with P_z^i and P_z^f the initial and the final value of the third component of \mathbf{P}_i .

Self-interactions in 2-flavour: numerical results

Plots taken from G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra, arXiv: 0808.0807 [hep-ph]

SPECTRAL SPLIT OF ν (AND MAYBE $\overline{\nu}$) FLUXES APPEAR TO BE OBSERVABLE SIGNATURES OF SELF-INTERACTIONS IN INVERSE HIERARCHY FOR ANY $\theta_{13} \neq 0$

As a result of collective effects for E greater than certain critical energies $(E_c \text{ for } \nu \text{ and } \overline{E}_c \text{ for } \overline{\nu})$ a full flavour change takes place.

low energy limit ($E < E_c$): $F'_e = F^0_e$ $F'_x = F^0_x$ high energy limit ($E > E_c$): $F'_e = F^0_x$ $= F'_e = F^0_x$

$$F'_x = F^0_e$$

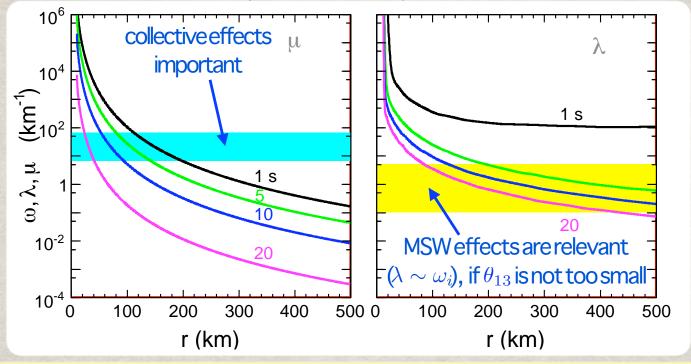
Self-interactions: 2-flavour vs 3-flavour

★ In a core-collapse supernova ν_{μ} and ν_{τ} have the same behavior because of typical energies. A two-flavour approximation give us a qualitative explanation of neutrino spectra features.

★ In inverted hierarchy and with $\theta_{13} \neq 0$, above certain critical energies a full flavour swap takes place. This is a robust signature of collective effects.

★ If the hierarchy is direct or if $\theta_{13} = 0$, the oscillated fluxes are equal to the non-oscillated ones.

But if we consider a three-flavour scenario, how do these features change?


We develop a three flavour scenario analysis including:

- \star the mixing angles $heta_{12}$, $heta_{13}$ and $heta_{23}$
- \star the mass differences Δm^2 and δm^2
- ***** 1-loop $\nu_{\mu} \nu_{\tau}$ matter interaction potential.

We consider the evolution for different times after the core-bounce, and check the evolution for the three flavour separately.

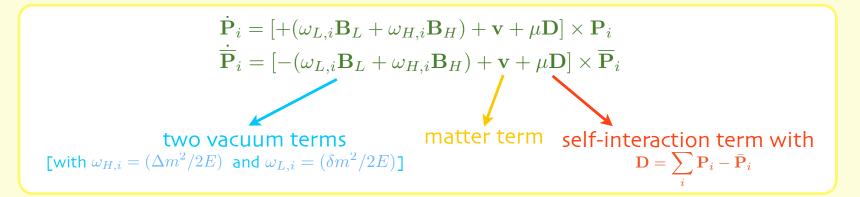
Self-interactions in 3-flavour scenario

We consider four different times (t = 1, 5, 10, 20 s) after the core-bounce.

We expect that:

collective effects take place at different radii for each t after the core-bounce
 MSW effects take place after collective ones

We choose a small value for $\theta_{13}(\sin^2 \theta_{13} = 10^{-6})$. In this way MSW effects are negligible for each t after the core-bounce.

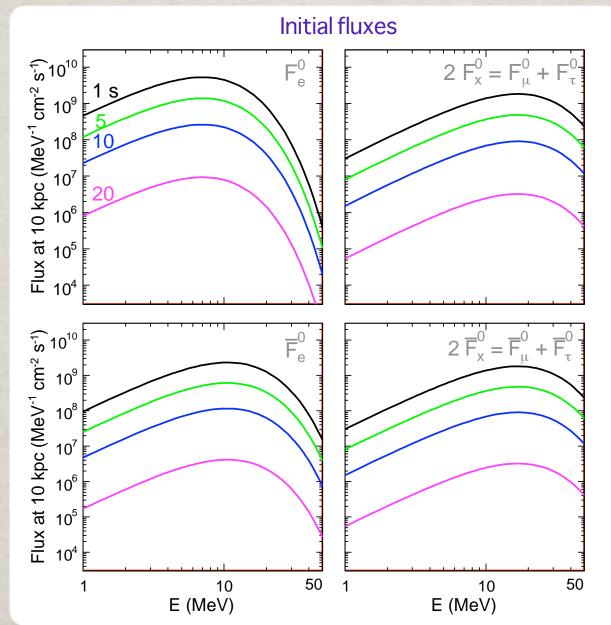

Some papers on collective effects in 3-flavour approximation:

- A. Esteban-Pretel, S. Pastor, R. Tomas, G. Raffelt, G. Sigl, arXiv: astro-ph/0712.1137
- B. Dasgupta, A. Dighe, arXiv: hep-ph/0712.3798
- H. Duan, G.M. Fuller and Y.Z. Qian, arXiv: 0801.1363 [hep-ph]
- B. Dasgupta, A. Dighe, A. Mirizzi and G.G. Raffelt, arXiv: 0801.1660 [hep-ph]

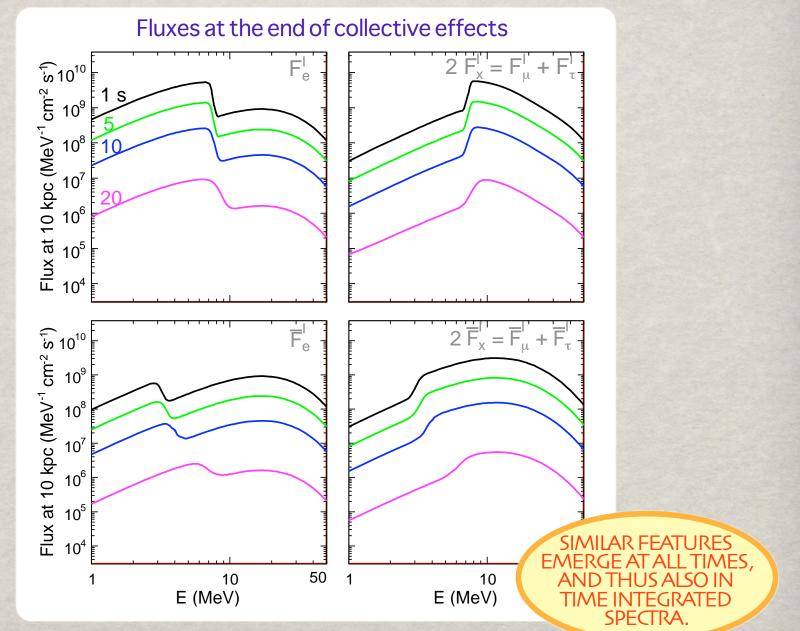
Self-interactions in 3-flavour: evolution equations

For each neutrino mode *i*, decompose the 3 x 3 (anti)neutrino density matrix over Gell-Mann matrices to get the Bloch 8-vector.

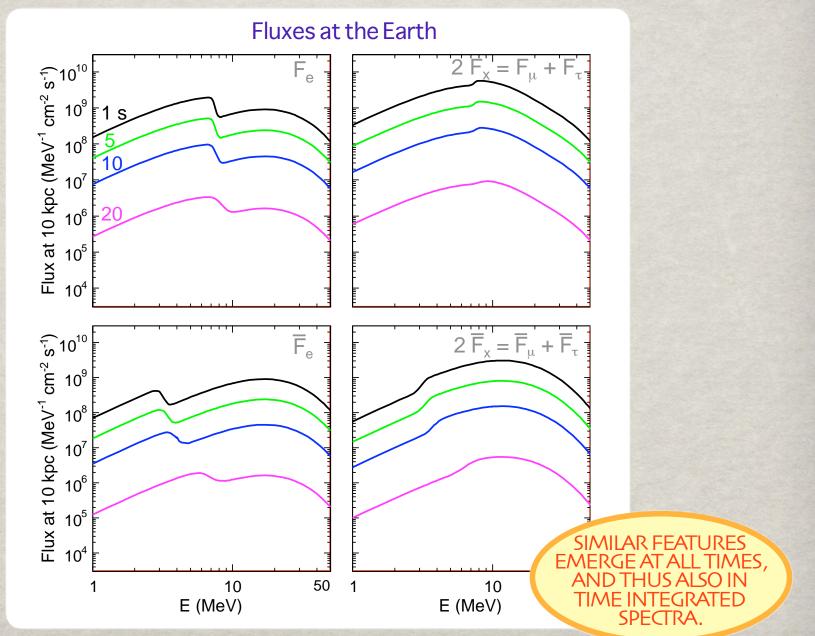
Self-interactions may be explained in terms of evolution equations for the Bloch vectors of ν (\mathbf{P}_i) and $\bar{\nu}(\mathbf{\overline{P}}_i)$:

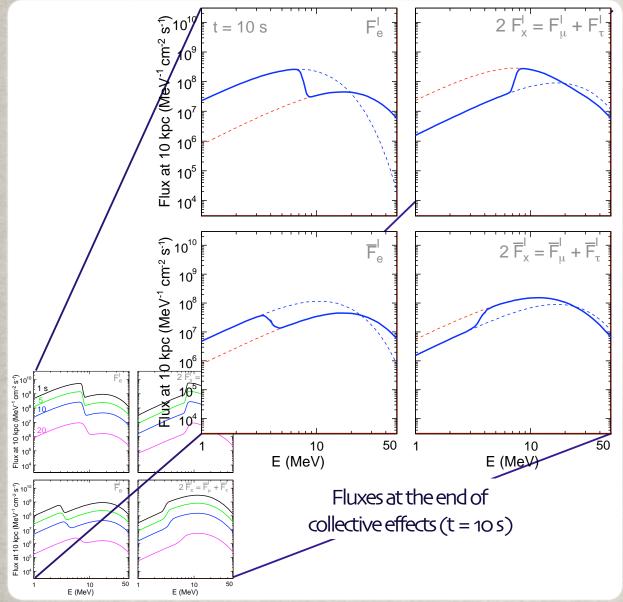

We numerically solve a large system of non-linear differential equations*.

A linear combination of P₃ and P₈ ($|\mathbf{P}_i| = 2/\sqrt{3}$) is related to $P(\nu_e \rightarrow \nu_e)$ and is the analogous of the third component in the two-flavour limit:


$$P_z \to P_3 + \frac{P_8}{\sqrt{3}}$$

G.L. Fogli, E. Lisi, A. Marrone, I. Tamborra, arXiv: 0812.3031 [hep-ph]


Self-interactions in 3-flavour: numerical results


Self-interactions in 3-flavour: numerical results

Self-interactions in 3-flavour: numerical results

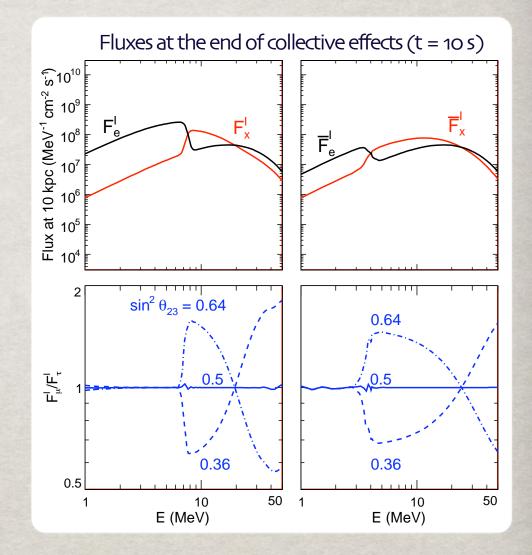
Self-interactions in 3-flavour: $\nu_e - \nu_x$ oscillated fluxes

In the three flavour case the oscillated fluxes can be expressed as simple combinations of the non oscillated ones:

low energy limit (
$$E < E_c$$
):
 $F'_e = F^0_e$
 $2F'_x = 2F^0_x$

high energy limit ($E > E_c$):

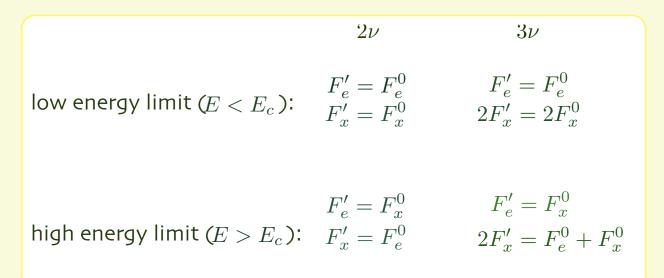
$$F'_e = F^0_x$$
$$2F'_x = F^0_e + F^0_x$$


Self-interactions in 3-flavour: $\nu_{\mu} - \nu_{\tau}$ oscillated fluxes

We explore the $\nu_{\mu} - \nu_{\tau}$ mixing for different values of θ_{23} . ν_x oscillated flux is not sensitive to θ_{23} .

When θ_{23}

★ belongs to the first octant, we have a leading $\nu_e \rightarrow \nu_{\tau}$ conversion ★ belongs to the second one, we have a leading $\nu_e \rightarrow \nu_{\mu}$ conversion ★ is maximal ($\theta_{23} = \pi/4$), ν_{μ} and ν_{τ} fluxes are exactly equal.


This different behavior between ν_{μ} and ν_{τ} fluxes, although is not observable nowadays, could be detected in a future supernova explosion.

Self-interactions: 2-flavour vs 3-flavour's remarks

* The three flavour case is similar, but does not reduce to the two flavour one.

* In particular the coupled evolution equations are sensitive to the absolute luminosity for each flavour. It makes a difference if the total neutrino-luminosity is distributed on two or three flavours.

* The split features are the same at different times. This may be more "visible" collective effects in the next supernova explosion.

* Minor three-flavour features are basically unobservable.

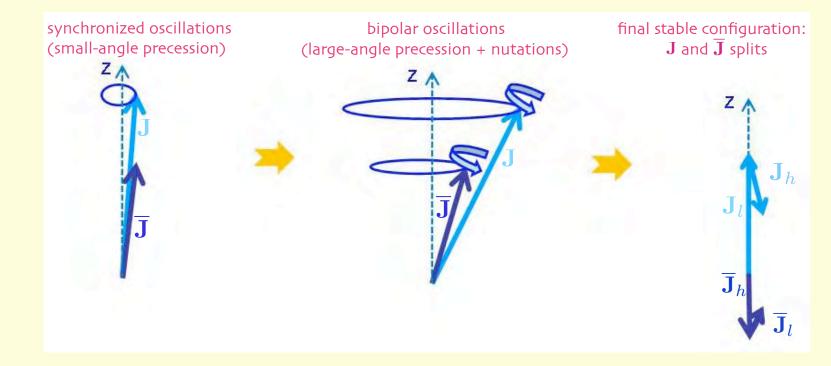
Conclusions

* Neutrino-neutrino interactions are not negligible when neutrino density is high, like in core-collapse supernovae.

★ Collective effects are important to improve our knowledge about the neutrino mass hierarchy and the mixing angle θ_{13} .

★ In direct hierarchy or if $\theta_{13} = 0$, the oscillated spectra are equal to the non-oscillated ones.

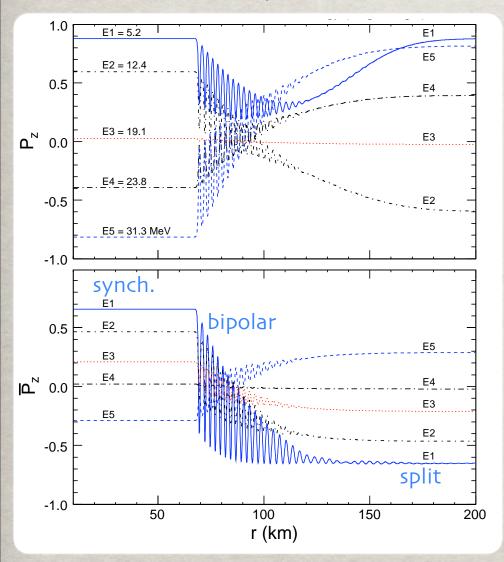
★ In inverted hierarchy and for any $\theta_{13} \neq 0$:


- spectral split takes place with the same features at different times after the corebounce. This feature may make collective effects more evident in the next supernova explosion.
- in a two-flavour scenario a full flavour swap takes place
- in a three-flavour scenario oscillated fluxes can be expressed as simple combinations of non-oscillated ones. An "effective" two flavour reduction is not possible because all three flavour evolve.
- u_x is not sensitive to different values of $heta_{23}$.
- the effect of $\delta m^2 \neq 0$ and 1-loop $\nu_{\mu} \nu_{\tau}$ corrections are negligible.

Waiting for the next supernova explosion...thanks for your attention! Backup slides

Self-interactions in 2-flavour: global evolution

When the collective effects are dominant, the alignment approximation is valid: the Bloch vectors are closely pinned to their sum ($\mathbf{P}_i || \mathbf{J}$ and $\overline{\mathbf{P}}_i || \overline{\mathbf{J}}$). The flavour evolution can be understood in terms of the global vectors $\mathbf{J} = \sum \mathbf{P}_i$ and $\overline{\mathbf{J}} = \sum \overline{\mathbf{P}}_i$.


At the end, alignment approximation is no longer valid (split).

 θ_{13} sets initial misalignment of **J** and $\overline{\mathbf{J}}$ with vertical. Its specific value is not much relevant (provided that $\theta_{13} > 0$). Only for $\theta_{13} = 0$ initial conditions are frozen.

Self-interactions in 2-flavour: spectral split

In terms of the third components of the Bloch vectors at different energies, we have:

neutrinos

For
$$E > E_c (\simeq 7 \text{ MeV}) : P_z^f = -P_z^i$$

full flavour conversion

For
$$E < E_c (\simeq 7 \text{ MeV}) : P_z^f = P_z^i$$

absence of flavour conversion

antineutrinos

For
$$E > \overline{E}_c (\simeq 4 \text{ MeV}) : \overline{P}_z^f = -\overline{P}_z^i$$

full flavour conversion

Plot taken form: G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, arXiv: hep-ph/0707.1998

Self-interactions in 2-flavour: spectral split

Neutrino spectral split

- * The alignment approximation is not able to explain the neutrino spectral split.
- * The critical energy E_c is predicted using the fact that $\#\nu_e \#\bar{\nu}_e = \text{const.}$

 Alternatively, the neutrino spectral split can be explained using the adiabatic hypothesis.

According to the this hypothesis, when μ slowly decreases:

 $\mathbf{P}_i || \mathbf{H}$ and $\overline{\mathbf{P}}_i || \overline{\mathbf{H}}$

It is applicable to the end of the collective effects.

Antineutrino spectral split (G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra, arXiv: 0808.0807 [hep-ph])

- * The antineutrino split is related to the breaking of the global alignment
- * The antineutrino split depends on the adiabatic hypothesis violation [it happens at low energies when $\mu \sim \omega$]
- \star The critical energy \overline{E}_c is a function of the matter potential and the mixing angle.