Particle Dark Matter in the galactic halo: results from DAMA/LIBRA

R. Cerulli
INFN-LNGS

Rencontres de Moriond EW
La Thuile, Italy
March, 2009
Relic DM particles from primordial Universe

- SUSY (as neutralino or sneutrino in various scenarios)
 - the sneutrino in the Smith and Weiner scenario
 - even a suitable particle not yet foreseen by theories
- axion-like (light pseudoscalar and scalar candidate)
- self-interacting dark matter
- mirror dark matter
- Kaluza-Klein particles (LKK)
- heavy exotic candidates, as "4th family atoms", ...
- Elementary Black holes, Planckian objects, Daemons

- sterile ν
- electron interacting dark matter
- a heavy ν of the 4-th family
- a heavy ν of the 4-th family

Right halo model and parameters?

- Composition?
- DM multicomponent also in the particle part?
- Right related nuclear and particle physics?

Non thermalized components?

Caustics?

Clumpiness?

etc... etc...
Some direct detection processes:

- **Scatterings on nuclei**
 → detection of nuclear recoil energy
 ![Diagram](image)

- **Conversion of particle into e.m. radiation**
 → detection of γ, X-rays, e$^-$
 ![Diagram](image)

- **Excitation of bound electrons in scatterings on nuclei**
 → detection of recoil nuclei + e.m. radiation

- **Interaction only on atomic electrons**
 → detection of e.m. radiation
 ![Diagram](image)

- **Interaction of light DMp (LDM)** on e$^-$ or nucleus with production of a lighter particle
 → detection of electron/nucleus recoil energy
 ![Diagram](image)

- **Inelastic Dark Matter:** $W + N \rightarrow W^* + N$
 → W has Two mass states χ^+, χ^- with δ mass splitting
 → Kinematical constraint for the inelastic scattering of χ^- on a nucleus
 \[
 \frac{1}{2} \mu v^2 \geq \delta \iff v \geq v_{thr} = \sqrt{\frac{2\delta}{\mu}}
 \]

- **Inelastic Dark Matter**

 e.g. signals from these candidates are completely lost in experiments based on “rejection procedures” of the e.m. component of their rate

- **Ionization:** Ge, Si
- **Bolometer:** TeO$_2$, Ge, CaWO$_4$, ...
- **Scintillation:** NaI(Tl), LXe, CaF$_2$(Eu), ...

... even WIMPs

... also other ideas...

... and more
The direct detection experiments can be classified in two classes, depending on what they are based:

1. on the recognition of the signals due to Dark Matter particles with respect to the background by using a “model-independent” signature

2. on the use of uncertain techniques of rejection of electromagnetic background (adding systematical effects and lost of candidates with part or pure electromagnetic productions)
The annual modulation: a model independent signature for the investigation of Dark Matter particles component in the galactic halo

With the present technology, the annual modulation is the main model independent signature for the DM signal. Although the modulation effect is expected to be relatively small, a suitable large-mass, low-radioactive set-up with an efficient control of the running conditions would point out its presence.

Drukier, Freese, Spergel PRD86
Freese et al. PRD88

\[v_\odot(t) = v_{\text{sun}} + v_{\text{orb}} \cos \gamma \cos[\omega(t-t_0)] \]

\[S_k[\eta(t)] = \int \frac{dR}{dE_R} dE_R \approx S_{0,k} + S_{m,k} \cos[\omega(t-t_0)] \]

Requirements of the annual modulation

1) Modulated rate according cosine
2) In a definite low energy range
3) With a proper period (1 year)
4) With proper phase (about 2 June)
5) For single hit events in a multi-detector set-up
6) With modulation amplitude in the region of maximal sensitivity must be <7% for usually adopted halo distributions, but it can be larger in case of some possible scenarios

To mimic this signature, spurious effects and side reactions must not only - obviously - be able to account for the whole observed modulation amplitude, but also to satisfy contemporaneously all the requirements.

Expected rate in given energy bin changes because the annual motion of the Earth around the Sun moving in the Galaxy
Competitiveness of NaI(Tl) set-up

- Well known technology
- High duty cycle
- Large mass possible
- "Ecological clean" set-up; no safety problems
- Cheaper than every other considered technique
- Small underground space needed
- High radiopurity by selections, chem./phys. purifications, protocols reachable
- Well controlled operational condition feasible
- Routine calibrations feasible down to keV range in the same conditions as the production runs
- Neither re-purification procedures nor cooling down/warming up (reproducibility, stability, ...)
- Absence of microphonic noise + effective noise rejection at threshold (τ of NaI(Tl) pulses hundreds ns, while τ of noise pulses tens ns)
- High light response (5.5 -7.5 ph.e./keV)
- Sensitive to SI, SD, SI&SD couplings and to other existing scenarios, on the contrary of many other proposed target-nuclei
- Sensitive to both high (by Iodine target) and low mass (by Na target) candidates
- Effective investigation of the annual modulation signature feasible in all the needed aspects
- Fragmented set-up
- etc.

A low background NaI(Tl) also allows the study of several other rare processes such as: possible processes violating the Pauli exclusion principle, CNC processes in 23Na and 127I, electron stability, nucleon and di-nucleon decay into invisible channels, neutral SIMP and nuclearites search, solar axion search, ...

High benefits/cost
DAMA: an observatory for rare processes @LNGS

DAMA/LXe
DAMA/R&D
low bckg DAMA/Ge for sampling meas.

DAMA/NaI
DAMA/LIBRA

http://people.roma2.infn.it/dama
DAMA/NaI : ≈100 kg NaI(Tl)

Results on rare processes:
- Possible Pauli exclusion principle violation
 - PLB408(1997)439
- CNC processes
 - PRC60(1999)065501
- Electron stability and non-paulian transitions in Iodine atoms (by L-shell)
 - PLB460(1999)235
- Search for solar axions
 - PLB515(2001)6
- Exotic Matter search
 - EPJ direct C14(2002)1
- Search for superdense nuclear matter
 - EPJ A23(2005)7
- Search for heavy clusters decays
 - EPJ A24(2005)51

Results on DM particles:
- PSD
 - PLB389(1996)757
- Investigation on diurnal effect
- Exotic Dark Matter search
 - PRL83(1999)4918
- Annual Modulation Signature

Model independent evidence of a particle DM component in the galactic halo at 6.3σ C.L.

Total exposure (7 annual cycles) 0.29 ton x yr
The new DAMA/LIBRA set-up ~250 kg NaI(Tl)
(Large sodium Iodide Bulk for RAre processes)

As a result of a second generation R&D for more radiopure NaI(Tl)
by exploiting new chemical/physical radiopurification techniques
(all operations involving crystals and PMTs - including photos - in HP Nitrogen atmosphere)

installing DAMA/LIBRA detectors
assembling a DAMA/LIBRA detector
filling the inner Cu box with further shield
closing the Cu box housing the detectors
view at end of detectors’ installation in the Cu box
detectors during installation; in the central and right up detectors the new shaped Cu shield surrounding light guides (acting also as optical windows) and PMTs was not yet applied
DAMA/LIBRA:

calibrations at low energy

Studied by using various external gamma sources (\(^{241}\text{Am},^{133}\text{Ba}\)) and internal X-rays or gamma's (\(^{40}\text{K},^{125}\text{I},^{129}\text{I}\))

The curves superimposed to the experimental data have been obtained by simulations

- **Internal \(^{40}\text{K}]):** 3.2 keV due to X-rays/Auger electrons (tagged by 1461 keV \(\gamma\) in an adjacent detector).
- **Internal \(^{125}\text{I})):** 67.3 keV peak (EC from K shell + 35.5 keV \(\gamma\) and composite peak at 40.4 keV (EC from L,M,.. shells + 35.5 keV \(\gamma\)).
- **External \(^{241}\text{Am} source):** 59.5 keV \(\gamma\) peak and 30.4 keV composite peak.
- **External \(^{133}\text{Ba} source):** 81.0 keV \(\gamma\) peak.
- **Internal \(^{129}\text{I})):** 39.6 keV structure (39.6 keV \(\gamma + \beta\) spectrum).

Routine calibrations with \(^{241}\text{Am}\)

$$\frac{\sigma_{LE}}{E} = \frac{(0.448 \pm 0.035)}{\sqrt{E(\text{keV})}} + (9.1 \pm 5.1) \cdot 10^{-3}$$
Noise rejection near the energy threshold

Typical pulse profiles of PMT noise and of scintillation event with the same area, just above the energy threshold of 2 keV

The different time characteristics of PMT noise (decay time of order of tens of ns) and of scintillation event (decay time about 240 ns) can be investigated building several variables.

From the Waveform Analyser 2048 ns time window:

- The separation between noise and scintillation pulses is very good.
- Very clean samples of scintillation events selected by stringent acceptance windows.
- The related efficiencies evaluated by calibrations with ^{241}Am sources of suitable activity in the same experimental conditions and energy range as the production data (efficiency measurements performed each ~10 days; typically 10^4–10^5 events per keV collected)

This is the only procedure applied to the analysed data.
Infos about DAMA/LIBRA data taking

DAMA/LIBRA test runs: from March 2003 to September 2003
DAMA/LIBRA normal operation: from September 2003 to August 2004
High energy runs for TDs: September 2004
to allow internal α's identification
(approximative exposure ≈ 5000 kg \times d)
DAMA/LIBRA normal operation: from October 2004

Data released here:
- four annual cycles: 0.53 ton \times yr
- calibrations: acquired ≈ 44 M events from sources
- acceptance window eff: acquired ≈ 2 M events/keV

<table>
<thead>
<tr>
<th>Period</th>
<th>Exposure (kg \times day)</th>
<th>$\alpha - \beta^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMA/LIBRA-1</td>
<td>Sept. 9, 2003 - July 21, 2004</td>
<td>51405</td>
</tr>
<tr>
<td>DAMA/LIBRA-2</td>
<td>July 21, 2004 - Oct. 28, 2005</td>
<td>52597</td>
</tr>
<tr>
<td>DAMA/LIBRA-3</td>
<td>Oct. 28, 2005 - July 18, 2006</td>
<td>39445</td>
</tr>
<tr>
<td>DAMA/LIBRA-4</td>
<td>July 19, 2006 - July 17, 2007</td>
<td>49377</td>
</tr>
<tr>
<td>Total</td>
<td>≈ 192824</td>
<td>≈ 0.53 ton \times yr</td>
</tr>
</tbody>
</table>

DAMA/NaI (7 years) + DAMA/LIBRA (4 years)
total exposure: 300555 kg\timesday $= 0.82$ ton\timesyr

Two remarks:
- One PMT problems after 6 months. Detector out of trigger since Sep. 2003 (it will be put again in operation at the 2008 upgrading)
- Residual cosmogenic 125I presence in the first year in some detectors (this motivates the Sept. 2003 as starting time)
Cumulative low-energy distribution of the single-hit scintillation events

Single-hit events = each detector has all the others as anticoincidence

(Obviously differences among detectors are present depending e.g. on each specific level and location of residual contaminants, on the detector's location in the 5x5 matrix, etc.)

Efficiencies already accounted for

About the energy threshold:

- The DAMA/LIBRA detectors have been calibrated down to the keV region. This assures a clear knowledge of the "physical" energy threshold of the experiment.
- It obviously profits of the relatively high number of available photoelectrons/keV (from 5.5 to 7.5).
- The two PMTs of each detector in DAMA/LIBRA work in coincidence with hardware threshold at single photoelectron level.
- Effective near-threshold-noise full rejection.
- The software energy threshold used by the experiment is 2 keV.

DAMA/LIBRA (4 years)
total exposure: 0.53 ton×yr

3.2 keV, tagged by 1461 keV γ in an adjacent detector
Model Independent Annual Modulation Result

DAMA/NaI (7 years) + DAMA/LIBRA (4 years)
Total exposure: 300555 kg\cdot day = 0.82\ ton\cdot yr

Experimental single-hit residuals rate vs time and energy

The data favor the presence of a modulated behavior with proper features at 8.2\,\sigma\,\text{C.L.}

\begin{align*}
\text{2-4 keV} & \\
A &= (0.0215 \pm 0.0026) \text{ cpd/kg/keV} \\
\chi^2/\text{dof} &= 51.9/66 \quad 8.3 \,\sigma\,\text{C.L.} \\
\text{Absence of modulation? No} \\
\chi^2/\text{dof} &= 117.7/67 \Rightarrow P(A=0) = 1.3 \times 10^{-4}
\end{align*}

\begin{align*}
\text{2-5 keV} & \\
A &= (0.0176 \pm 0.0020) \text{ cpd/kg/keV} \\
\chi^2/\text{dof} &= 39.6/66 \quad 8.8 \,\sigma\,\text{C.L.} \\
\text{Absence of modulation? No} \\
\chi^2/\text{dof} &= 116.1/67 \Rightarrow P(A=0) = 1.9 \times 10^{-4}
\end{align*}

\begin{align*}
\text{2-6 keV} & \\
A &= (0.0129 \pm 0.0016) \text{ cpd/kg/keV} \\
\chi^2/\text{dof} &= 54.3/66 \quad 8.2 \,\sigma\,\text{C.L.} \\
\text{Absence of modulation? No} \\
\chi^2/\text{dof} &= 116.4/67 \Rightarrow P(A=0) = 1.8 \times 10^{-4}
\end{align*}

The data favor the presence of a modulated behavior with proper features at 8.2\,\sigma\,\text{C.L.}
Model-independent residual rate for single-hit events

DAMA/NaI (7 years) + DAMA/LIBRA (4 years) total exposure: 300555 kg×day = 0.82 ton×yr

Results of the fits keeping the parameters free:

<table>
<thead>
<tr>
<th>Energy Interval</th>
<th>A (cpd/kg/keV)</th>
<th>T = 2π/ω (yr)</th>
<th>t₀ (day)</th>
<th>C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMA/NaI (7 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2+4) keV</td>
<td>0.0252 ± 0.0050</td>
<td>1.01 ± 0.02</td>
<td>125 ± 30</td>
<td>5.0σ</td>
</tr>
<tr>
<td>(2+5) keV</td>
<td>0.0215 ± 0.0039</td>
<td>1.01 ± 0.02</td>
<td>140 ± 30</td>
<td>5.5σ</td>
</tr>
<tr>
<td>(2+6) keV</td>
<td>0.0200 ± 0.0032</td>
<td>1.00 ± 0.01</td>
<td>140 ± 22</td>
<td>6.3σ</td>
</tr>
<tr>
<td>DAMA/LIBRA (4 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2+4) keV</td>
<td>0.0213 ± 0.0032</td>
<td>0.997 ± 0.002</td>
<td>139 ± 10</td>
<td>6.7σ</td>
</tr>
<tr>
<td>(2+5) keV</td>
<td>0.0165 ± 0.0024</td>
<td>0.998 ± 0.002</td>
<td>143 ± 9</td>
<td>6.9σ</td>
</tr>
<tr>
<td>(2+6) keV</td>
<td>0.0107 ± 0.0019</td>
<td>0.998 ± 0.003</td>
<td>144 ± 11</td>
<td>5.6σ</td>
</tr>
<tr>
<td>DAMA/NaI + DAMA/LIBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2+4) keV</td>
<td>0.0223 ± 0.0027</td>
<td>0.996 ± 0.002</td>
<td>138 ± 7</td>
<td>8.3σ</td>
</tr>
<tr>
<td>(2+5) keV</td>
<td>0.0178 ± 0.0020</td>
<td>0.998 ± 0.002</td>
<td>145 ± 7</td>
<td>8.9σ</td>
</tr>
<tr>
<td>(2+6) keV</td>
<td>0.0131 ± 0.0016</td>
<td>0.998 ± 0.003</td>
<td>144 ± 8</td>
<td>8.2σ</td>
</tr>
</tbody>
</table>

Modulation amplitudes, A, of single year measured in the 11 one-year experiments of DAMA (NaI + LIBRA)

- The modulation amplitudes for the (2 – 6) keV energy interval, obtained when fixing exactly the period at 1 yr and the phase at 152.5 days, are: (0.019 ± 0.003) cpd/kg/keV for DAMA/NaI and (0.011 ± 0.002) cpd/kg/keV for DAMA/LIBRA.
- Thus, their difference: (0.008 ± 0.004) cpd/kg/keV is ≈ 2σ which corresponds to a modest, but non negligible probability.

χ² test (χ²/dof = 4.9/10, 3.3/10 and 8.0/10) and run test (lower tail probabilities of 74%, 61% and 11%) accept at 90% C.L. the hypothesis that the modulation amplitudes are normally fluctuating around their best fit values.

Compatibility among the annual cycles
Power spectrum of single-hit residuals

Treatment of the experimental errors and time binning included here

2-6 keV vs 6-14 keV

DAMA/NaI (7 years)
total exposure: 0.29 ton×yr

DAMA/LIBRA (4 years)
total exposure: 0.53 ton×yr

DAMA/NaI + DAMA/LIBRA (4 years)
total exposure: 0.82 ton×yr

Not present in the 6-14 keV region (only aliasing peaks)

Clear annual modulation is evident in (2-6) keV while it is absence just above 6 keV

Principal mode in the 2-6 keV region:
DAMA/NaI 2.737 · 10⁻³ d⁻¹ ≈ 1 yr⁻¹
DAMA/LIBRA 2.705 · 10⁻³ d⁻¹ ≈ 1 yr⁻¹
DAMA/NaI + LIBRA 2.737 · 10⁻³ d⁻¹ ≈ 1 yr⁻¹
Can a hypothetical background modulation account for the observed effect?

No Modulation above 6 keV

- $A = (0.9 \pm 1.1) \times 10^{-3}$ cpd/kg/keV

 - DAMA/LIBRA-1: (0.0016 ± 0.0031)
 - DAMA/LIBRA-2: $-(0.0010 \pm 0.0034)$
 - DAMA/LIBRA-3: $-(0.0001 \pm 0.0031)$
 - DAMA/LIBRA-4: $-(0.0006 \pm 0.0029)$

 → statistically consistent with zero

No modulation in the whole spectrum:

- R_{90} percentage variations with respect to their mean values for single crystal in the DAMA/LIBRA-1,2,3,4 running periods

 → cumulative gaussian behaviour with $\sigma \approx 1\%$, fully accounted by statistical considerations

- Fitting the behaviour with time, adding a term modulated according period and phase expected for Dark Matter particles: consistent with zero

 + if a modulation present in the whole energy spectrum at the level found in the lowest energy region $\rightarrow R_{90} \sim \text{tens cpd/kg} \rightarrow \sim 100 \sigma$ far away

- No modulation in the background: these results account for all sources of bckg (+ see later)
Multiple-hits events in the region of the signal - DAMA/LIBRA 1-4

- Each detector has its own TDs read-out → pulse profiles of multiple-hits events (multiplicity > 1) acquired (exposure: 0.53 ton×yr).

- The same hardware and software procedures as the ones followed for single-hit events

Signals by Dark Matter particles do not belong to multiple-hits events, that is:

multiple-hits events = **Dark Matter particles events “switched off”**

Evidence of annual modulation with proper features as required by the DM annual modulation signature is present in the **single-hit** residuals, while it is absent in the **multiple-hits** residual rate.

This result offers an additional strong support for the presence of Dark Matter particles in the galactic halo further excluding any side effect either from hardware or from software procedures or from background.
Energy distribution of the modulation amplitudes, S_m, for the total exposure

$$R(t) = S_0 + S_m \cos[\omega(t - t_0)]$$

DAMA/Nal (7 years) + DAMA/LIBRA (4 years)
total exposure: 300555 kg\times\text{day} = 0.82 \text{ ton\times yr}

here $T = 2\pi/\omega = 1 \text{ yr}$ and $t_0 = 152.5 \text{ day}$

A clear modulation is present in the (2-6) keV energy interval, while S_m values compatible with zero are present just above.

In fact, the S_m values in the (6-20) keV energy interval have random fluctuations around zero with χ^2 equal to 24.4 for 28 degrees of freedom.
Statistical distributions of the modulation amplitudes (S_m)

a) S_m values for each detector, each annual cycle and each considered energy bin (here 0.25 keV)

b) $\langle S_m \rangle$ = mean values over the detectors and the annual cycles for each energy bin; σ = errors associated to each S_m

DAMA/LIBRA (4 years)
total exposure: 0.53 ton×yr

Each panel refers to each detector separately; 64 entries = 16 energy bins in 2–6 keV energy interval × 4 DAMA/LIBRA annual cycles

2–6 keV

Standard deviations of the variable

$$\frac{(S_m - \langle S_m \rangle)}{\sigma}$$

for the DAMA/LIBRA detectors

$r.m.s. \approx 1$

Individual S_m values follow a normal distribution since

$$\frac{(S_m - \langle S_m \rangle)}{\sigma}$$

is distributed as a Gaussian with a unitary standard deviation (r.m.s.)

S_m statistically well distributed in all the detectors and annual cycles
Is there a sinusoidal contribution in the signal?
Phase $\neq 152.5$ day?

$$R(t) = S_0 + S_m \cos[\omega(t-t_0)] + Z_m \sin[\omega(t-t_0)] = S_0 + Y_m \cos[\omega(t-t^*)]$$

For Dark Matter signals:

* $|Z_m| \ll |S_m| \approx |Y_m|
* $\omega = \frac{2\pi}{T}$
* $t^* \approx t_0 = 152.5\text{d}$
* $T = 1\text{ year}$

Slight differences from 2nd June are expected in case of contributions from non thermalized DM components (as e.g. the SagDEG stream)

<table>
<thead>
<tr>
<th>E (keV)</th>
<th>S_m (cpd/kg/keV)</th>
<th>Z_m (cpd/kg/keV)</th>
<th>Y_m (cpd/kg/keV)</th>
<th>t^* (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6</td>
<td>0.0122 \pm 0.0016</td>
<td>-0.0019 \pm 0.0017</td>
<td>0.0123 \pm 0.0016</td>
<td>144.0 \pm 7.5</td>
</tr>
<tr>
<td>6-14</td>
<td>0.0005 \pm 0.0010</td>
<td>0.0011 \pm 0.0012</td>
<td>0.0012 \pm 0.0011</td>
<td>$--$</td>
</tr>
</tbody>
</table>
The analysis at energies above 6 keV, the analysis of the multiple-hits events and the statistical considerations about S_m already exclude any sizeable presence of systematical effects.

Additional investigations on the stability parameters

Modulation amplitudes obtained by fitting the time behaviours of main running parameters, acquired with the production data, when including a DM-like modulation

Running conditions stable at a level better than 1%

<table>
<thead>
<tr>
<th></th>
<th>DAMA/LIBRA-1</th>
<th>DAMA/LIBRA-2</th>
<th>DAMA/LIBRA-3</th>
<th>DAMA/LIBRA-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-0.0001 ± 0.0061 °C</td>
<td>0.0026 ± 0.0086 °C</td>
<td>0.001 ± 0.015 °C</td>
<td>0.0004 ± 0.0047 °C</td>
</tr>
<tr>
<td>Flux N_2</td>
<td>0.13 ± 0.22 l/h</td>
<td>0.10 ± 0.25 l/h</td>
<td>-0.07 ± 0.18 l/h</td>
<td>-0.05 ± 0.24 l/h</td>
</tr>
<tr>
<td>Pressure</td>
<td>0.015 ± 0.030 mbar</td>
<td>-0.013 ± 0.025 mbar</td>
<td>0.022 ± 0.027 mbar</td>
<td>0.0018 ± 0.0074 mbar</td>
</tr>
<tr>
<td>Radon</td>
<td>-0.029 ± 0.029 Bq/m3</td>
<td>-0.030 ± 0.027 Bq/m3</td>
<td>0.015 ± 0.029 Bq/m3</td>
<td>-0.052 ± 0.039 Bq/m3</td>
</tr>
<tr>
<td>Hardware rate above single photoelectron</td>
<td>$-0.20 \pm 0.18 \times 10^{-2}$ Hz</td>
<td>$0.09 \pm 0.17 \times 10^{-2}$ Hz</td>
<td>$-0.03 \pm 0.20 \times 10^{-2}$ Hz</td>
<td>$0.15 \pm 0.15 \times 10^{-2}$ Hz</td>
</tr>
</tbody>
</table>

All the measured amplitudes well compatible with zero

+None can account for the observed effect

(to mimic such signature, spurious effects and side reactions must not only be able to account for the whole observed modulation amplitude, but also simultaneously satisfy all the 6 requirements)
Example of Stability Parameters: DAMA/LIBRA-1

\[
R_{Hj} = \text{hardware rate of j-th detector above single photoelectron}
\]

- Operating Temperature
- HP Nitrogen flux
- HP N₂ Pressure in the inner Cu box
- Radon external to the shield

All amplitudes well compatible with zero + no effect can mimic the annual modulation
Summary of the results obtained in the additional investigations of possible systematics or side reactions

<table>
<thead>
<tr>
<th>Source</th>
<th>Main comment</th>
<th>Cautious upper limit (90% C.L.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADON</td>
<td>Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.</td>
<td><2.5×10⁻⁶ cpd/kg/keV</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield → huge heat capacity + T continuously recorded</td>
<td><10⁻⁴ cpd/kg/keV</td>
</tr>
<tr>
<td>NOISE</td>
<td>Effective full noise rejection near threshold</td>
<td><10⁻⁴ cpd/kg/keV</td>
</tr>
<tr>
<td>ENERGY SCALE</td>
<td>Routine + instrinsic calibrations</td>
<td><1-2 ×10⁻⁴ cpd/kg/keV</td>
</tr>
<tr>
<td>EFFICIENCIES</td>
<td>Regularly measured by dedicated calibrations</td>
<td><10⁻⁴ cpd/kg/keV</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>No modulation above 6 keV; no modulation in the (2-6) keV multiple-hits events; this limit includes all possible sources of background</td>
<td><10⁻⁴ cpd/kg/keV</td>
</tr>
<tr>
<td>SIDE REACTIONS</td>
<td>Muon flux variation measured by MACRO</td>
<td><3×10⁻⁵ cpd/kg/keV</td>
</tr>
</tbody>
</table>

Note: Even if larger, they cannot satisfy all the requirements of annual modulation signature. Thus, they cannot mimic the observed annual modulation effect.
... about the interpretation of the direct DM experimental results

The positive and model independent result of DAMA/NaI + DAMA/LIBRA

- Presence of modulation for 11 annual cycles at $\sim 8.2\sigma$ C.L. with the proper distinctive features of the signature; all the features satisfied by the data over 11 independent experiments of 1 year each one
- Absence of known sources of possible systematics and side processes able to quantitatively account for the observed effect and to contemporaneously satisfy the many peculiarities of the signature

No other experiment whose result can be directly compared in model independent way is available so far

To investigate the nature and coupling with ordinary matter of the possible DM candidate(s), effective energy and time correlation analysis of the events has to be performed within given model frameworks

Corollary quests for candidates

- astrophysical models: ρ_{DM}, velocity distribution and its parameters
- nuclear and particle Physics models
- experimental parameters

E.g. for WIMP class particles: SI, SD, mixed SI&SD, preferred inelastic, scaling laws on cross sections, form factors and related parameters, spin factors, halo models, etc.

+ different scenarios
+ multi-component halo?

Thus uncertainties on models and comparisons
Model-independent evidence by DAMA/NaI and DAMA/LIBRA

well compatible with several candidates (in several of the many astrophysical, nuclear and particle physics scenarios); other ones are open

Neutralino as LSP in SUSY theories

Various kinds of WIMP candidates with several different kind of interactions
 Pure SI, pure SD, mixed + Migdal effect +channeling,... (from low to high mass)

WIMP with preferred inelastic scattering

Mirror Dark Matter

Light Dark Matter

Elementary Black holes such as the Daemons

Sterile neutrino

Self interacting Dark Matter

Pseudoscalar, scalar or mixed light bosons with axion-like interactions

a heavy ν of the 4-th family

heavy exotic candidates, as “4th family atoms”, ...

Kaluza Klein particles

... and more

Possible model dependent positive hints from indirect searches not in conflict with DAMA results
 (but interpretation, evidence itself, derived mass and cross sections depend e.g. on bckg modeling, on DM spatial velocity distribution in the galactic halo, etc.)

Available results from direct searches using different target materials and approaches do not give any robust conflict
Examples for few of the many possible scenarios superimposed to the measured modulation amplitudes $S_{m,k}$

Elastic scattering on nuclei
SI & SD mixed coupling
$v_0 = 170 \text{ km/s}$

About the same C.L. ...scaling from NaI

$\theta = 2.435$

<table>
<thead>
<tr>
<th>Curve label</th>
<th>Halo model (see ref. [4, 34])</th>
<th>Local density (GeV/cm3)</th>
<th>Set as in [4]</th>
<th>DM particle mass</th>
<th>$\xi \sigma_{SI}$ (pb)</th>
<th>$\xi \sigma_{SD}$ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>A5 (NFW)</td>
<td>0.2</td>
<td>A</td>
<td>15 GeV</td>
<td>10^{-7}</td>
<td>2.6</td>
</tr>
<tr>
<td>g</td>
<td>A5 (NFW)</td>
<td>0.2</td>
<td>A</td>
<td>15 GeV</td>
<td>1.4×10^{-4}</td>
<td>1.4</td>
</tr>
<tr>
<td>h</td>
<td>A5 (NFW)</td>
<td>0.2</td>
<td>B</td>
<td>60 GeV</td>
<td>10^{-7}</td>
<td>1.4</td>
</tr>
<tr>
<td>i</td>
<td>A5 (NFW)</td>
<td>0.2</td>
<td>B</td>
<td>60 GeV</td>
<td>8.7×10^{-6}</td>
<td>1.4</td>
</tr>
<tr>
<td>j</td>
<td>B3 (Evans power law)</td>
<td>0.17</td>
<td>A</td>
<td>100 GeV</td>
<td>10^{-7}</td>
<td>8.7×10^{-2}</td>
</tr>
<tr>
<td>k</td>
<td>B3 (Evans power law)</td>
<td>0.17</td>
<td>A</td>
<td>100 GeV</td>
<td>1.1×10^{-5}</td>
<td>0.11</td>
</tr>
</tbody>
</table>

where we are ...

- DAMA/LIBRA over 4 annual cycles (0.53 ton\(\times\)yr) confirms the results of DAMA/NaI (0.29 ton\(\times\)yr)
- The cumulative confidence level for the model independent evidence for presence of DM particle in the galactic halo is 8.2 \(\sigma\) (total exposure 0.82 ton \(\times\) yr)

... since Oct. 2008 again in data taking

First upgrading of the experimental set-up in Sept. 2008

Phase 1

- Mounting of the “clean room” set-up in order to operate in HP N\(_2\) atmosphere
- Opening of the shield of DAMA/LIBRA set-up in HP N\(_2\) atmosphere
- Replacement of some PMTs in HP N\(_2\) atmosphere
- Closing of the shield

Phase 2

- Dismounting of the Tektronix TDs (Digitizers + Crates)
- Mounting of the new Acqiris TD (Digitizers + Crate)
- Mounting of the new DAQ system with optical read-out
- Test of the new TDs (hardware) and of the new required DAQ system (software)
... and where we are going

- Continuing the data taking
- Update corollary analyses in some of the many possible scenarios for DM candidates, interactions, halo models, nuclear/atomic properties, etc.. Consider further ones also on the basis of literature

- **Next upgrading:** replacement of all the PMTs with higher Q.E. ones.
- Production of new high Q.E. PMTs in progress
- Goal: lowering the energy thresholds of the detectors

- Analyses/data taking to investigate also other rare processes in progress/foreseen

- Long term data taking to improve the investigation, to disentangle at least some of the many possibilities, to investigate other features of DM particle component(s) and second order effects, (& results on other processes with higher sensitivity), etc..

A possible highly radiopure NaI(Tl) multi-purpose set-up DAMA/1 ton (proposed by DAMA in 1996) is at present at R&D phase

to deep investigate Dark Matter phenomenology at galactic scale

work is human only if it remains intelligent and free (Pope Paul VI, Populorum Progressio)