Auger results and the sources of UHECRs

Michael Kachelrieß

NTNU, Trondheim

- Motivation & expectations for UHECR astronomy
- Q Auger data and their interpretation
- Auto-correlation analysis
- Cen A as UHECR source

▲□→ < □→ < □→</p>

astronomy with VHE photons restricted to few Mpc:

- astronomy with VHE photons restricted to few Mpc:
- astronomy with HE neutrinos:
 - large λ_v , but also large uncertainty $\langle \delta \vartheta \rangle \gtrsim 1^\circ$

(日) (同) (E) (E) (E)

- astronomy with VHE photons restricted to few Mpc:
- astronomy with HE neutrinos:
 - large $\lambda_{\nu},$ but also large uncertainty $\langle \delta \vartheta \rangle \gtrsim 1^\circ$
 - $\bullet\,$ small event numbers: $\lesssim {\rm few}/{\rm yr}$ for PAO or ICECUBE
 - identification of steady sources challenging

Dipole anisotropy – cosmol. Compton-Getting effect

- induced by motion of Sun relative to cosmological rest frame
- requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$

(4回) (三) (三)

- Dipole anisotropy cosmol. Compton-Getting effect
 - induced by motion of Sun relative to cosmological rest frame
 - requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$
- Anisotropies on medium scales

- $z \leq 0.2$: spots with $\ell \sim 20\text{--}40$ degrees
- reflects LSS of matter, modified by B
- requires $\lambda_{CR}(E) \leq \text{few} \times \lambda_{LSS}$

- A 🗇 🕨 - A 🖻 🕨 - A 🖻

- Dipole anisotropy cosmol. Compton-Getting effect
 - induced by motion of Sun relative to cosmological rest frame
 - requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$
- Anisotropies on medium scales
 - $z \leq 0.2$: spots with $\ell \sim 20\text{--}40$ degrees
 - reflects LSS of matter, modified by B
 - requires $\lambda_{CR}(E) \lesssim \text{few} \times \lambda_{LSS}$
- Small-scale clustering
 - Small-scale \sim exp. angular resolution/deflections in B
 - \Rightarrow CR from the "same" point sources
 - requires small qB/E and small N_s

- Dipole anisotropy cosmol. Compton-Getting effect
 - induced by motion of Sun relative to cosmological rest frame
 - requires $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$
- Anisotropies on medium scales
 - $z \leq 0.2$: spots with $\ell \sim 20$ –40 degrees
 - reflects LSS of matter, modified by B
 - requires $\lambda_{CR}(E) \lesssim \text{few} \times \lambda_{LSS}$
- Small-scale clustering
 - Small-scale \sim exp. angular resolution/deflections in B
 - \Rightarrow CR from the "same" point sources
 - requires small qB/E and small N_s
- Orrelations with specific sources
 - requires small qB/E and small N_s
 - good source catalogue

Correlations with AGNs: Auger analysis

AGN from VCC catalogue:

- mainly Seyfert galaxies
- expectation: $E_{\rm max} \ll 10^{20} {\rm eV}$ for most AGN in VCC

Correlations with AGNs: Auger analysis

• first data set with data < May 2006 to fix cuts:

 $E_{\rm th} = 56 {\rm EeV}, \ \ell_0 = 3.1^{\circ} \ {\rm and} \ d \leq 75 \, {\rm Mpc}.$

• second data set May 2006–August 2007:

13 events, 8 correlated, 2.7 expected $\Rightarrow p_{ch} \approx 2 \times 10^{-3}$

Correlations with AGNs: Auger analysis

• first data set with data < May 2006 to fix cuts:

 $E_{\rm th} = 56 {\rm EeV}, \ \ell_0 = 3.1^{\circ} \ {\rm and} \ d \leq 75 \, {\rm Mpc}.$

- second data set May 2006–August 2007: 13 events, 8 correlated, 2.7 expected $\Rightarrow p_{\rm ch} \approx 2 \times 10^{-3}$
- just a "3 σ effect", test against isotropy, no propagation
- not confirmed by HiRes
- AGN or something with similar distribution?

Correlations with AGNs: PAO analysis

• 27 CRs (\odot) and 472 AGN (*):

・回 ・ ・ ヨ ・ ・ ヨ ・

Correlations with AGNs: PAO analysis

• 27 CRs (⊙) and 472 AGN (∗):

correlated AGN are not promising UHECR sources

[Moskalenko et al. '08, Hardcaste et al. '08, Rachen '08, ...]

Moriond '09

Michael Kachelrieß

Auger results and the sources of UHECRs

Deflections for $eE/Q = 4 \times 10^{19} \,\text{eV}$ in regular GMF:

・ロン ・同 と ・ ヨ と ・ ヨ と

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

Moriond '09

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1,$$

where

- DD: number of pairs in catalogue
- RR: number of pairs in random sets

for most popular sources of UHECRs:

Comparing with sources:

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1,$$

for most popular sources of UHECRs: AGN

Michael Kachelrieß Auger results and the sources of UHECRs

Comparing with sources:

[A. Cuoco et al. '07, '08]

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1,$$

for most popular sources of UHECRs: AGN and GRB

Moriond '09

Michael Kachelrieß

Auto-correlation function of different sources:

Moriond '09

- reduced statistical error
- differences on all angular scales
- reduced dependence on *B*:
 - global comparison on all angular scales
 - only relative deflections enter
- possible to constrain B

Auto-correlation function of different sources:

- reduced statistical error
- differences on all angular scales
- reduced dependence on B:
 - global comparison on all angular scales
 - only relative deflections enter
- possible to constrain B

- reduced statistical error
- differences on all angular scales
- reduced dependence on *B*:
 - global comparison on all angular scales
 - only relative deflections enter
- possible to constrain B

- reduced statistical error
- differences on all angular scales
- reduced dependence on *B*:
 - global comparison on all angular scales
 - only relative deflections enter
- possible to constrain B

Clustering signal for the PAO-Science data

[A. Cuoco et al. '08]

Cen A as UHECR source?

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Cen A as UHECR source?

- acceleration close to AGN core
- secondaries by pγ interactions
- γ spectrum from cascading

Image: 1

• tension between horizon and fraction of correlated PAO events

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO

(日) (同) (目) (日) (日) (日)

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO
- ⇒ nuclei with admixture of protons?

(日) (同) (E) (E) (E)

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO
- \Rightarrow nuclei with admixture of protons?
 - auto-correlation more robust method than cross-correlation

イロン イボン イヨン イヨン 三連

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO
- \Rightarrow nuclei with admixture of protons?
 - auto-correlation more robust method than cross-correlation
 - deflections and lensing in cluster and Galactic fields important

- tension between horizon and fraction of correlated PAO events
- tension between chemical composition and correlation data from PAO
- \Rightarrow nuclei with admixture of protons?
 - auto-correlation more robust method than cross-correlation
 - deflections and lensing in cluster and Galactic fields important
 - Cen A may be first source observed in TeV $\gamma\text{-rays}$ and UHECRs

(日) (同) (E) (E) (E)