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Outline

 Gamma-ray astrophysics in the MeV range
 ST3G - the prototype detector

o Qur plan

Deirdre Horan, Conseil Scientifique du LLR, 21.11.2016



ST3G - key characteristics

* Energy range: a few MeV - a few GeV
* Polarisation capabillities
* High angular resolution:

* 0.4 deg at 100 MeV

(4 deg at 100 MeV for Fermi LAT)

Deirdre Horan, Conseil Scientifique du LLR, 21.11.2016
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* using blazars to illustrate the gap since these are broadband emitters from radio all the way up to gamma rays
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* using blazars to illustrate the gap since these are broadband emitters from radio all the way up to gamma rays



Gamma-ray Astrophysics at
MeV energies

a few key questions ...

* Where do the UHECRs come from?
* How do supermassive black holes form?

e |s [ orentz invariance violated?



Where do the UHECRs come from??
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e Today, 100+ years after their discovery, the origin of the ultra-high energy cosmic rays
(UHECRSs; E > 10'7eV), remains one of the greatest unsolved mysteries in astrophysics
e Exquisite measurements of the spectrum of cosmic rays have been made

¢ No individual source or population of sources has been identified as the accelerator of the
UHECRSs

Deirdre Horan, Conseil Scientifique du LLR, 21.11.2016



Where do the UHECRs come from??
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e Today, 100+ years after their discovery, the origin of the ultra-high energy cosmic rays
(UHECRSs; E > 10'7eV), remains one of the greatest unsolved mysteries in astrophysics

e Exquisite measurements of the spectrum of cosmic rays have been made

¢ No individual source or population of sources has been identified as the accelerator of the
UHECRSs

e Many theories exist and can be summarised by looking at the updated version of the famous
Hillas diagram from 1984
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‘ Equvalentcmcenergy Vi, (Gl Hillas diagram 2010 (Ptitsyna & Troitsky)
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e Since the particle must acquire its energy before leaving the accelerator, and, since the particle
Is presumed to be accelerated by the while being confined by the magnetic field, the Larmor
radius of the particle must not exceed the linear size of the accelerator

e This is known as the Hillas criterion and is represented graphically in the Hillas plot (Hillas 1984)

e The acronyms are defined as follows: BH - black hole; RG - radio galaxy; BL - blazars; AD -
central parsec; K - knots; HS - hot spots; L - lobes; SB - starbursts;
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Where do the UHECRs come from??

e AGN and their various constituent parts Hillas diagram 2010 (Ptitsyna & Troitsky)
occupy a large portion of this diagram 15 Mo R
and thus, comprise the physical -H; <
conditions necessary to accelerate 0L TS 1 o
protons to UHE S

S+ BH (RG, BL) 2_

¢ Indeed the authors of this plot claim that _ NAD (RG. BL) ™
only the most powerful AGN, i.e., radio 2 .| \\,L\ S
galaxies, quasars and BL Lac type -5 AD (Sy) 1B
objects, are capable of accelerating é
protons to such energies - §

e They list jets, lobes, knots and hot spots aad R
of the powerful AGN as other possible
acceleration sites -15 = ‘
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og(R [kpc])
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= (Given that AGN are the most luminous persistent sources of electromagnetic
radiation in the Universe (Murase 2015), it is not surprising that they are (Dermer
2012, ... ) and have been (Burbidge 1962, ... ) considered as prime candidates
for the acceleration of the UHE by many authors since their initial discovery in
1943 (Seyfert 1943)
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How do we determine whether AGN are the accelerators of the UHECRs ???
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Where do the UHECRs come from??

How do we determine whether AGN are the accelerators of the UHECRs ?7??
e ook directly (e.g. Auger Collaboration et al.)
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Auger HE events (black circles) and exposure (blue) from Auger Collaboration (2007)




Where do the UHECRs come from??

How do we determine whether AGN are the accelerators of the UHECRs ???
¢ |[00ok directly - neutrinos ... promising in the years to come
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How do we determine whether AGN are the accelerators of the UHECRs ?7??
e ook directly (e.g. Auger Collaboration et al.)
¢ |00k for evidence of hadronic acceleration by modeling the gamma-ray emission
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¢ |00k for evidence of hadronic acceleration by modeling the gamma-ray emission
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How do we determine whether AGN are the accelerators of the UHECRs ???

e ook directly (e.g. Auger Collaboration et al.)

¢ |00k for evidence of hadronic acceleration by modeling the gamma-ray emission
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Where do the UHECRs come from??

How do we determine whether AGN are the accelerators of the UHECRs ???

e ook directly (e.g. Auger Collaboration et al.)

¢ |00k for evidence of hadronic acceleration by modeling the gamma-ray emission
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How do supermassive black holes form?
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How do supermassive black holes form?

"Recent observations of quasars at z >~ 6 suggest.that some supermassive black
holes (SMBHSs) quiokly‘aoh‘ieve masSes of Me >~ 109 Mo , even before the Universe
_Is a billion years old. The origin of these SMBHs, Iooated in-galactic centers and

serving as energy sources for active galactic nuclei (AGN) is one of the unsolved
mysteries of Contemporary astrophysics” (Ch0| Shlosman & Begelman, 2016)

VvSVYN :1palo abew|




How do supermassive black holes form?

"Recent observations of quasars at z >~ 6 suggest.that some supermassive black
holes (SMBHSs) quiokly‘aoh‘ieve masSes of Me >~ 102 Mo , even before the Universe
_Is abillion years old. The origin of these SMBHes, Iooated in:galactic centres and

serving as energy sources for active galactic. nuclei (AGN) is one of the unsolved
mysteries of contemporary astrophysics” (Ch0| Shlosman & Begelman, 2016)

VvSVYN :1palo abew|

They are difficult to find because only the most powerful blazars are detectable at -
such large distances and the most powerful blazars have the peak of their emission
| ~inthe MeV range ... but we suffer from an “MeV gap”




How do supermassive black holes form?

e SMBHSs “conventionally”" postulated to be born when a massive star (100 -1000
M®o) collapses ... then they grow slowly by accreting surrounding gas and

merging with other structures

e There is, however, growing evidence for a population of SMBHSs at large redshifts
whose formation could not have followed this channel
= it Is not efficient enough for them to have been so massive at such an early
epoch: the universe was not old enough for them to have grown by accretion

e Many theories exist to explain their formation and a crucial input for such studies
IS the space density of these distant supermassive black holes

we need to find more of these early
(large z) supermassive black holes |

R I I
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How do supermassive black holes form?

The space density of SMBHs
as a function of redshift
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How do supermassive black holes form?

The space density of SMBHSs The radio-loud AGN - power
as a function of redshift as a function of energy
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How do supermassive black holes form?

Log ®(M>10°M,) [Gpc~3]
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The most powerful radio-loud AGN have thef
peak of their emission at MeV energies!
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How do supermassive black holes form?

The space density of SMBHs The radio-loud AGN - power
as a function of redshift as a function of energy
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How do supermassive black holes form?

e Only the most powerful, luminous objects

are detectable at such large z

= the so-called "MeV blazars”

= they emit bulk of HE emission at MeV
energies
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How do supermassive black holes form?

e Only the most powerful, luminous objects

are detectable at such large z
= the so-called "MeV blazars”

= they emit bulk of HE emission at MeV

energies

e The BAT instrument on Swift has began to="

probe the rising edge of this population
while the LAT on Fermi can probe their

falling edge

objects since they peak outside of their

energy ranges
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How do supermassive black holes form?

e Only the most powerful, luminous objects
are detectable at such large z
= the so-called "MeV blazars”
= they emit bulk of HE emission at MeV
energies

* The BAT instrument on Swift has began td-"
probe the rising edge of this population
while the LAT on Fermi can probe their g

falling edge

.J;
= neither instrument is ideal to study thes%o
Q
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objects since they peak outside of their
energy ranges

¢ |[n order to probe their number density, an
iInstrument sensitive in the MeV range is
optimal
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How do supermassive black holes form?

e Only the most powerful, luminous objects
are detectable at such large z
= the so-called "MeV blazars”
= they emit bulk of HE emission at MeV
energies
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'Jh
= neither instrument is ideal to study thes%o
Q
—

objects since they peak outside of their
energy ranges

¢ |[n order to probe their number density, an
iInstrument sensitive in the MeV range is
optimal

48

46

44

42

40

The radio-loud AGN - power
as a function of energy

~Log L 47.5-46

—_
aand

| 43-448 E T
= : .’ | . :» PR .
@ & & R

{ - - L - . 8
' J '+ (s L ealt . s
. . 3 : - .
i FLEE = ~ et
- '@ - N w3k
» v ol R
- Y~ . . Jb 4

LI

IllIIlllll IIII

46-47.5

45-46 S o
44-45 g R

! gy g

/' ;
AGord o

10 15 20
Log v [rest frame]

B

® 25

90980°609 | :AIXIB (91.02) lull|esiyD

The discovery of a large number of SMBHs at z > 4 could put
strong constraints on theories of their formation
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s Lorentz Invariance violated”

Lorentz invariance is the fundamental symmetry of Einstein’s theory of relativity

I.e. the laws of physics remain the same for all observers that
are moving with respect to each other at uniform velocity

* Lorentz invariance has been tested to a great level of detail but
there exist grand unified theories (e.g. the Standard-Model
Extension) where gravity is combined with the three other
fundamental forces which allow for the breaking of Lorentz
symmetry at the Planck scale

* |.e. at very high energies - unattainable experimentally
(1.22x1013GeV)

* But minute deviations from Lorentz invariance might still be
present at much lower energies
* these deviations can accumulate over large distances
* this makes astrophysical measurements the most sensitive
tests of Lorentz symmetry
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In the photon sector violations of Lorentz symmetry include
vacuum dispersion and vacuum birefringence

Vacuum dispersion Vacuum birefringence
* if the speed of light in a vacuum is e when the rotation symmetry of the
energy (frequency)-dependant vacuum is broken, light still has two
polarisation components but they
* photons of different energies travel at different speeds
emitted from a high-z source will
arrive on earth at different times e as aresult, the net polarisation of

the light changes as it propagates
* Fermi LAT observations of, e.qg.,

distant GRBs has placed limits on e change in polarisation depends on
this effect the energy (frequency) of the light
Ot o« OVL OP =« WOVL

sensitivity gain of 1/w compared to

time-of-flight measurements
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s Lorentz Invariance violated”

In the photon sector violations of Lorentz symmetry include
vacuum dispersion and vacuum birefringence

Vacuum birefringence

* light is shown propagating from a distant
galaxy to the Earth

e the instantaneous electric-field vector in a
plane transverse to direction of motion is
shown as a black arrow

* the polarisation of the light is determined
by 2 quantities:
* the orientation of the ellipse (w)
* itsshape (E1 and E2)

* the breaking of rotation symmetry causes
the polarisation and hence the orientation
and shape of the ellipse to change as the
light travels through space

http://www.phvsics.indiana. ~K lec/mov.him|#4


http://www.physics.indiana.edu/~kostelec/mov.html#4

1.2m

04 modules : 1 module = HARPO
32 TPCs : 2 modules with a common cathode

2 bar Argon gas
Readout chip ASTRE
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Key challenge: self-triggering ... in real time

... In space



ST13G

Kinetic Energy (MeV)

e-p

e-p T
—_ l = —_
S = o~
L ) T S
- E e -~
2102 = ’ -
NE E "-‘\ 018
') IO 3 ;_ \:N"" e ]
et C - \\ - e
::' E '.-P"" '\ . :‘
o0t s \, v
g0t e e 5
& s —_"o-..' \\ AN H
=R S Y -
= E \ ) e
AR Unl= ‘ \ \ 5
v = |
— - 3, —
o -7 L 1 | el APETTTY EEEPEPERTITY B VEPTTTTY BT ¢ v
@ 107 1 2 3 4 5 &E
=) 10 | 10 10° 10 L0 10° a

5]

e-p n u
|
= S
ol e T 35 kma.s.l.
1072 & e
].0-1 i el ':.‘(:‘H\“w
N - -~
= - "\
B .-c’“" \-. S
— IH - "‘.
107 b~ .
"t \ \
-5 Al >4 5
IO - - ._‘\_
i i
10° & _ \ \
: ,ﬂmw . \ \\ ._. : ’,'..
. 7 C “lll LALL /N ‘.\ W “
10 1 bl Sl P .
10 | 10 102 10° 10 [0

()

-~

0O km a.s.l.

Differential Flux (/(cm” s MeV))

\-
.\‘.-
\\
. ‘\\
.b-
\-
M,
“““““““ -.__\'-
-~ _ " (" V ‘."".\
L o
\:.‘
llllll A Ll lll LA l‘l".‘:-xll lllAlll ) A LA
2 3 1 5
10 10° 10° 0 10

Kinetic Energy (MeV)

Data recorded at Kirune (Northern Sweden) 20.01.1996
(Quotid Atmospheric Radiation Model (QARM))
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ST13G

Simulation of observation of the Crab Nebula (“standard candle”)

exact

approximate
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Crab (index: 2; flux:1 x10-3 MeV cm-=2 s-1) Angle (deg)
1 week effective exposure with ST3G @35 km (Kirune)
10.5 sigma for angular cut of 0.3 deg




ST13G

 We want to fly ST3G on a balloon to:
* calibrate the instrument with actual cosmic data
* understand the background
* run the trigger in its real environment

= measure the combined sensitivity of the
trigger/detector system



Our plans

CNES April 2017

* seek approval for balloon flight (BSO)
* flight duration of approx. 1 week

ERC September 2017

* fund several CDDs and postdocs

* fund hardware

Organise a workshop at LLR early in 2017
* accrete more people to join our team

PhD thesis proposed for 2017 (CNES/CNRS)



Our plans

CNES April 2017

e seek approval for balloon flight (BSO)

e flight duration of approx. 1 week

ERC September 2017

e fund several CDDs and postdocs

e fund hardware

Organise a workshop at LLR early in 2017

e accrete more people to join our team
PhD thesis proposed for 2017 (CNES/CNRS)

... for these we request the continued support of LLR



Thank you for your attention
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Key challenge: self-triggering ... in real time ... in space




Particles (cm-2 s-1 MeV-1)
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