

<u>HARPO:</u> <u>Analysis of beam and cosmics data</u>

Philippe Gros

Conseil Scientifique LLR 21 Novembre 2016

- Detector monitoring using cosmic rays
 - detector/gas stability over several months
- Polarisation measurement in a gamma ray beam
- Simulations
 - pair conversion event generator
 - full detector simulation

Detector monitoring using cosmic rays

- The charge is normalised with regard to the track angle
- The MPV is obtained from a Landau fit (of slices) (mean value affected by threshold/saturation effects)
- Vdrift is also easily extracted from this plot

Cosmic runs LLR

- Relative measurements
 - First run as reference ("clean gas")
- Weekly data taking of ~1.5h, for 6 months
- Clear degradation of gain and e- capture

Gas stability

Conseil Scientifique LLR

Gas stability

- Test done without HV
 - monitoring necessary: risk of damage on μM
 - HV turned on only for data taking ~1h/day
- **PYRAME** module for HV monitoring and control

nesh [µA]

- automatic detection of current spikes
- emergency shut-down in case of problem
- successfully tested
- thanks to F. Magniette

- Planned long term stability test
 - fully automated
 - daily cosmic-ray data taking

Gamma-ray beam Reconstruction and Analysis

Polarisation

- Large systematics due to cubic geometry
- Cancel systematic bias by taking the ratio between P=100% and P=0%

Polarisation: DATA

Presented at the SPIE conference Space Telescopes and Instrumentation July 2016, Edimburgh

Simulation

Event generator

- Exact pair production event generator developed
 - full 5D differential cross-section
 - photon polarisation
 - first published in NIM A 729 (2013) 765
- Validated and compared
 - cross validation with analytical formulas
 - comparison with other generators
- To be implemented in Geant4

Presented at the SciNeGHE conference, October 2016, Pisa paper submitted to Astroparticle Physics

Remark on Azimuthal angle

- Azimuthal angle definitions
 - recoil angle φ_r
 - pair plane angle ω
 - pair bisector ϕ
- Angle ω used in previous publications underestimates
 A at low energy
- φ appears in Bethe-Heitler formula, agrees with asymptotic values

Presented at the SciNeGHE conference, October 2016, Pisa paper submitted to Astroparticle Physics

Azimuthal angle ω (old)

Azimuthal angle φ (new)

Data Analysis in HARPO Philippe Gros Conseil Scientifique LLR

2016-11-21

16/21

- Electron and positron 4-vectors from generator
- Track propagation and gas ionisation with Geant4
- Custom simulation of TPC
 - drift, diffusion, gain fluctuations, electronics response
 - output same format as HARPO data

HARPO

Polarisation: MC

DATA/MC 4 TPC orientations

systematic bias is well reproduced and cancelled by the simulation

- HARPO data are well understood
- Detector can be well monitored with tracks
 - stable with occasional operation
 - starting test under full time operation
- Excellent beam polarisation measurement
- Good simulation for systematics study

Backup

Polarisation

• Modulation of the azimuthal angle ω

Data Analysis in HARPO Philippe Gros

Conseil Scientifique LLR

Angular resolution

24/21

Angular resolution

- Agreement with theoretical prediction
 - relatively small contribution of tracking
- Excellent agreement with simulation
 - effect of saturation dominates at high energy
- Potential for improvement
 - estimation of track momentum
 - even 100% resolution should significantly improve

Vertex Finder

Vertex Fitting

• Polar charge distribution around vertex

Vertex Fitting

• Clean up: keep only straight lines

Philippe Gros Conseil Scientifique LLR

Vertex Fitting

- Simple
- Robust:
 - ignores obvious scattering and background
 - potential for small opening angle
- Potential for improvement
 - better peak finding
 - use of distance info (focus on short distance for large opening angle, long distance for small)

- As before: compare charge profile
 - 1: match vertexes if there are several with same Z position
 - 2: match the tracks in the vertex (simple: only 2 possibilities)

Vertex Matching

• Assign signal to tracks

Vertex Matching

• Compare profiles: $X(1,2) \leftrightarrow Y(1,2)$ "same"

Vertex Matching

• Compare profiles: $X(1,2) \leftrightarrow Y(2,1)$ "switch"

Data Analysis in HARPO Philippe Gros Conseil Scientifique LLR

2016-11-21

Efficiency

Polarisation asymmetry

