HARPO

- Phase sol :
 - Réalisations : D. Bernard.

focus > CS du 7 Jan 2013

• Analyse et résultats : P. Gros

• Phase vol : D. Horan

liens à http://llr.in2p3.fr/~dbernard/polar/harpo-t-p.html

Le projet HARPO (Hermetic ARgon POlarimeter) : Liste de signataires "Japon" (Nov. 2014)

• FRANCE: the detector

Denis Bernard, Philippe Bruel, Mickael Frotin, Yannick Geerebaert, Berrie Giebels, Philippe Gros, Deirdre Horan, Marc Louzir, Patrick Poilleux, Igor Semeniouk, Shaobo Wang ^a ^aLLR, Ecole Polytechnique and CNRS/IN2P3, France David Attié, Denis Calvet, Paul Colas, Alain Delbart, Patrick Sizun ^b ^bIRFU, CEA Saclay, France Diego Götz ^{b,c} ^cAIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp, CEA Saclay, France

JAPAN: the beam.

S. Amano, T. Kotaka, S. Hashimoto, Y. Minamiyama, A. Takemoto, M. Yamaguchi, S. Miyamoto^e ^e LASTI, University of Hyôgo, Japan S. Daté, H. Ohkuma^f ^f JASRI/SPring8, Japan

Objectifs scientifiques

- Présentés à la fin de la décennie précédente en CS
- Astrophysique :
 - $\bullet\,$ exploration du "trou" de sensibilité $1 < E < 100\,{\rm MeV}$
 - polarimétrie : compréhension du fonctionnement de sources cosmiques émettrices de rayons γ (AGN, GRB, pulsars ...)
- Science fondamentale
 - recherche de physique au dela du modèle standard : violation de l'invariance de Lorentz (LIV)
 - recherche de l'axion et autres ALP (en particulier composantes de la matière noire)
- Update aujourd'hui : Deirdre.

Calendrier et financements

Phase sol	uniquement			
		financement	k€	début CDD
2008	bibliographie			
2009	premiers travaux MC, LAr TPC			
2010	résultats MC, design GAr TPC	P-et-U (LLR)	30	
2011	construction proto	IN2P3 (LLR)	11	
2012	test cosmiques et publi	P2IO (LLR $+ CEA$)	81	thèse Shaobo CNES/CNRS
2013	2 publis "théoriques", fabrication GEM			Philippe (P2IO)
2014	tests, publi GEM	ANR (LLR $+ CEA$)	403	
	conception, réalisation trigger faisceau	, , , , , , , , , , , , , , , , , , ,		
	MoU, transport, datataking Japon			
2015	analyse 1.0 (Shaobo), 2.0 (Philippe)			Philippe, David (ANR)
	soutenance Shaobo, étude ASTRE			
	recirculation/purification gaz, test, publi			
2016	analyse 3.0, publi SPIE2016			Ryo (Dec.)
	publi trigger, fabrication ASTRE			5 ()
	soumission 2 publis Gros+Bernard			
2017	Japon : publi résultats finaux	fin prévue ANR Juin		
	ASTRE caractérisation, publi (elec, radhard)			
	générateur d'evts dans geant4			
	caractérisation gaz : le retour (pyrame !)			
2018		fin prolongée Juin		

Papier TPC

Angular resolution

- nucleus recoil $\propto E^{-5/4}$
- multiple scattering (optimal fits) $\propto E^{-3/4}$

point-source differential sensitivity

limit detectable $E^2 dN/dE$, à la Fermi: 4 bins/decade, 5σ detection, T=3 years, $\eta=0.17$ exposure fraction, $\geq 10\gamma$. "against" extragalactic background

NIM A 701 (2013) 225

Papier polarimétrie

- Publication du 1er générateur d'événements 5D, polarisé, exact jusqu'au seuil.
- Utilisation de "variables optimales" à la Verderi. 1D \rightarrow 5D : gain en précision / 2.
- Etude de la dilution de l'asymmétrie de polarisation en diffusion multiple avec détecteur homogène et fits optimal (à la Kalman)
- Pulsar du Crabe, T = 1 year, $V = 1 \text{ m}^3$, argon 5 bar, $(\eta = \epsilon = 1)$ $\sigma_P \approx 1.0\%$ η "exposure fraction", ϵ efficacité.
- Coupes expérimentales, $\epsilon = 45\%$, $\sigma_P \approx 1.4\%$ 5 σ MDP of $7\%/\sqrt{\text{Flux/Crab}}$
- For $B \ll S$, argon, P "pas trop élevée" :

$$\sigma_P \approx 1.4\% \sqrt{\left(\frac{\text{Crab}}{F}\right) \left(\frac{1 \text{ year}}{T}\right) \left(\frac{1 \text{ m}^3}{V}\right) \left(\frac{5 \text{ bar}}{P}\right) \left(\frac{1}{\eta \epsilon}\right)}$$

NIM A 729 (2013) 765

Préparation du prototype TPC HARPO

Gas Electron Multiplier $50\,\mu\mathrm{m}$ Kapton, copper clad, pitch $140\,\mu m$, $\Phi70\,\mu m$

"bulk" micromegas gap $128\,\mu\mathrm{m}$

F. Sauli, NIM A 386, 531 (1997) I. Giomataris *et al.*, NIM A 560, 405 (2006)

Réalisation au CERN et montage de la structure hybride par nous à l'atelier RD51

Amplification par système hybride 2 GEM $+ \mu M$

 55 Fe (dedicated test bench) and cosmic-rays (in TPC)

Ph. Gros et al., TIPP2014, PoS(TIPP2014)133

"Beam" trigger system

- S_{up} upstream scintillator
- O one of the 5 other scintillators
- M_{slow} : a delayed $(>1\mu {
 m s})$ signal on the micromegas mesh
- *L* laser trigger pulse

"Main line":
$$T_{\gamma,laser} = \overline{S}_{up} \cap O \cap M_{slow} \cap L$$

Y. Geerebaert *et al.*, (VCI2016 NIM A (arXiv:1603.06817)

Real Time Conference (RT), 2016 IEEE-NPSS)

and

"Beam" trigger system: additional lines

• Trigger lines:

7	$T_{\gamma, laser}$	$\overline{S}_{up} \cap O \cap M_{slow} \cap L$
8	$T_{noMesh,laser}$	$\overline{S}_{up} \cap O \cap L$
9	$T_{invMesh,laser}$	$\overline{S}_{up} \cap O \cap M_{quick} \cap L$
10	$T_{noUp,laser}$	$O \cap M_{slow} \cap L$
11	$T_{noPM,laser}$	$\overline{S}_{up} \cap M_{slow} \cap L$
12	$T_{noLaser}$	$\overline{S}_{up} \cap O \cap M_{slow} \cap \overline{L}$

 Designed to characterize the performance (signal efficiency, background rejection) of each component of main trigger line

Pmm2 board **FPGA** Fully Trigger efficiency Automatic Switched PARISROC study Trigger Scintillators Trigger F.A.S.T. Mesh + CFD Amplifier 5nF Main trigger Laser Laser pulse Time

Y. Geerebaert *et al.*, (VCI2016 NIM A (arXiv:1603.06817)

and Real Time Conference (RT), 2016 IEEE-NPSS)

"Beam" trigger system: conversion point distributions

- signal efficiency 51 %
- background rejection 99.3 %
- incident rate 2 kHz
- signal on disk 50 Hz

Y. Geerebaert *et al.*, (VCI2016 NIM A (arXiv:1603.06817) and Re

Real Time Conference (RT), 2016 IEEE-NPSS)

Préparation de la prise de données

- Logiciel de monitoring (Igor, Philippe, Yannick) : on-line et off-line.
- Memorandum-of-Understanding (Denis, Alain, Shuji et DR5, "cellule", et U. of Hyôgo)
- Empaquetage Mickaël et al. et transport (Ulisse)

Data Taking Nov. 2014 NewSUBARU, LASTI, Japan

• Linearly polarized γ beam from Laser inverse Compton scattering, e^- beam 0.6 – 1.5 GeV.

• $0.532 \,\mu\mathrm{m}$ and $1.064 \,\mu\mathrm{m} \, 20 \,\mathrm{kHz}$ pulsed Nd:YVO₄ (2ω and 1ω),

- Monochromaticity by collimation on axis
- Fully polarized or random polarization beams (P = 0, P = 1)
- 2.1 bar Ar:isoC₄H₁₀ 95:5 (+ a 1-4 bar scan).

A. Delbart et al., ICRC2015 PoS (ICRC2015) 1016.

Pics 2014

le groupe du LLR LLR juillet dans la salle de shifts NewSUBARU novembre préparation prise de données NewSUBARU novembre

Japan beam Data: gallery

Sample of γ -rays from 74 to 1.7 MeV converting to e^+e^- in 2.1 bar Ar: Isobutane 95:5 detected by the HARPO TPC (pre-beam-calibration γ -ray energy on plots)

D. Bernard, Future Space-based Gamma-ray Observatories Workshop, NASA Goddard Space Flight Center, March 2016.

Japan data : carte des configurations de faisceau(x)

A. Delbart et al., ICRC2015 PoS (ICRC2015) 1016.

ASTRE : chip readout de 3ème génération radhard

- Etude D. Baudin (Irfu) CDD sur financement HARPO-ANR
 - ASTRE: ASIC with SCA&Trigger for detector Readout Electronics 64 canaux 4 Gains / canal: ASTRE 120 fC; 240 fC; 1pC; 10pC 16 valeurs de filtrage: 1 channel Trigger pulse 75 ns à 8 µs Hit register 512 cellules mémoires Charge range Fréquence d'échantillonnage: FILTER SCA 1MHz à 100 MHz CSA Fréquence de lecture: x68 25 MHz BUFFER SCA MANAGER Readout TEST SLOW CONTROL Power on Mode Reset In Test Serial Interface CK
 - Auto trigger: discriminateur + seuil réglable (3 bits globaux + 4 bits / canal)
 - Information de multiplicité: « OU » analogique des 64 discriminateurs
 - Adresse des canaux touchés
 - Lecture du SCA: tous; canaux touchés; canaux sélectionnés
 - Lecture d'un nombre de cellules prédéfinies (1 à 512) / trigger
 - Possibilité de court-circuiter le CSA et d'entrer directement sur le filtre RC2 ou le SCA
- Seuil Linear Energy Transfer (LET) $15 \text{ (AGET)} \rightarrow > 120 \text{ MeV cm}^2/\text{mg}$ (ASTRE, prédit)

O. Gevin et al., Journées VLSI-PCB-FPGA 2016, Strasbourg, juin 2016

ASTRE : chip pour TPC de 3ème génération et radhard

- pré-série prototype réalisée cet été
- encapsulée cet automne
- 2016 : caractérisation (électronique) : les tests ont commencé

 2017 : caractérisation (résistance au rayonnement) : HIF (lon Irradiation Facility) de Louvain-la-Neuve

Publications, Communications en Conférences, Thèses

• Phase sol uniquement

	2010	2011	2012	2013	2014	2015	2016	Total	en cours
articles publiés				2		1		3	
articles soumis							2	2	>4
conf. sans proc.	2	1	3	2	3	3	4	18	
conf. avec proc.	1	2	1	1	2	2	6	15	
thèses soutenues						1		1	
thèse en cours									2
com.						5		5	
total	3	3	4	5	5	12	12	44	

• participations aux collaborations :

- RD51, development of Micro-Pattern Gas Detectors Technologies, CERN et al.
- e-ASTROGAM, France, Italie, et al.

http://llr.in2p3.fr/~dbernard/polar/harpo-t-p.html

Communications grand public

http://llr.in2p3.fr/~dbernard/polar/harpo-t-p.html

Our competitors

- All-silicon :
 - 1 2° @ 100 MeV (MC), plus de masse qu'HARPO, sensitivité semblable 10 100 MeV.
 - Capacité à observer le Compton avec le même détecteur jusqu'à 0.1 MeV
 - Nombreux projets (survivants e-ASTROGAM (Fr-It et al.) et ComPair (US et al.), wafers ''épais'' (500 μm).
 - Aucune démonstration de polarimétrie (même MC).
- Emulsions (GRAINE) :
 - 1.2° @ 100 MeV, MC et beam test.
 - polarisation vue à 3σ en faisceau 0.8-2.4 GeV, mais "*ability to get down below 100 MeV an issue*", death by stats.
- TPC gaz :
 - SMILE (Kyôto) : semblable à HARPO mais focus Compton.
 - ADept (US) : développent l'amplification dans le gaz .. TPC CS₂⁻, $v_{drift} \times 1000$, $t_{drift} = 50 \,\mathrm{ms}$, protons $20 \,\mathrm{kHz/m^2}$, pile-up $1 \,\mathrm{k/(evt \times m^2)}$

Conclusion

- Nous sommes en train d'inventer une nouvelle façon de faire de l'astronomie γ de très haute performance.
- Astro γ non polarisée :
 - MC : Nous sommes les meilleurs sous 100 MeV;
 - validation faisceau faite : nous sommes les seuls sous 100 MeV;
- Polarimétrie γ :
 - MC : Nous sommes les seuls (et les meilleurs donc) sous 100 MeV;
 - Polarimétrie impossible au dessus de 100 MeV avec un budget décent :
 - death by stats
 - angle d'ouverture
 - Donc : MC : Nous sommes les seuls
 - Validation en faisceau faite : don't miss Philippe's talk !
 - Donc : Nous sommes les seuls.
- Qualité des personnels français et japonais, efforts des contribuables

Nous sommes leaders dans la gamme en énergie critique. don't miss Deirdre's talk !

Planches supplétives

Précision mesure de P

- Pour $B \ll S$, argon, P "pas trop élevée" :

$$\sigma_P \approx 1.4\% \sqrt{\left(\frac{\text{Crab}}{F}\right) \left(\frac{1 \text{ year}}{T}\right) \left(\frac{1 \text{ m}^3}{V}\right) \left(\frac{5 \text{ bar}}{P}\right) \left(\frac{1}{\eta \epsilon}\right)}$$

• Variation gaz, densité (Achtung Achtung : plot sans les coupes expérimentales ...)

NIM A 729 (2013) 765

Depth by Stats ?

• Product of the attenuation length H for three noble gases by a typical cosmic-source spectrum $1/E^2$ as a function of photon energy E (H is taken from N.I.S.T.)

NIM A 729 (2013) 765