How do black hole binaries form? Studying stellar evolution with gravitational wave observations

Irina Dvorkin (Institut d'Astrophysique de Paris)

with: Joe Silk, Elisabeth Vangioni, Jean-Philippe Uzan, Patrick Petitjean (IAP); Keith Olive (U Minnesota)

GWPAW, Annecy, 31 May 2017

Outline

- Introduction
- How to make a black hole
- 3 Constraining black hole formation with GW observations
- Conclusions and outlook

Introduction

2 How to make a black hole

3 Constraining black hole formation with GW observations

4 Conclusions and outlook

Gravitational waves from binary black holes

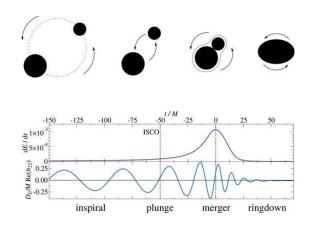


Image credit: A. Taracchini/AEI

Observing merging BHs with GW

- Ground-based interferometers: LIGO, Virgo, KAGRA...
- Spaced-based interferometer LISA
- Pulsar Timing Arrays

Massive black hole binaries $~(10^6 M_{\odot} \lesssim M \lesssim 10^9 M_{\odot})$

Stellar-mass black hole binaries $(M \lesssim 100 M_{\odot})$

10⁻⁸ Hz

10⁻⁶ Hz

10⁻⁴ Hz

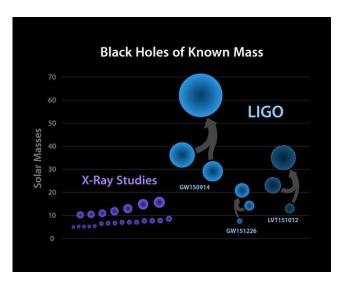
10⁻² Hz

1 Hz

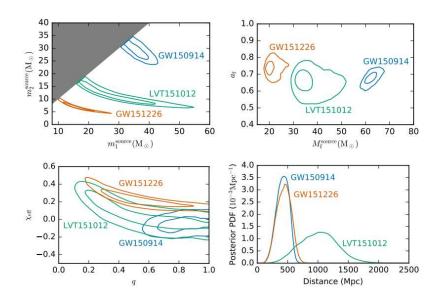
10² Hz

Pulsar Timing Arrays Parkes, NANOGrav, EPTA, SKA...

Space-based interferometer LISA



Ground-based interferometers LIGO, Virgo, KAGRA



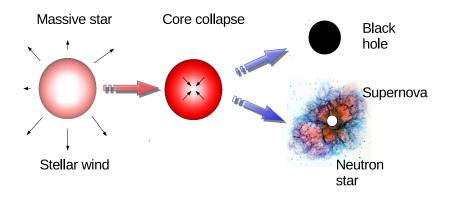
Astrophysics with gravitational waves

Starting to measure the BH mass distribution (LIGO/VIRGO Collaborations [1606.04856])

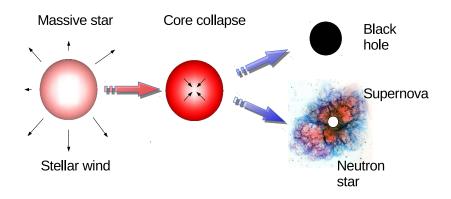
Astrophysics with gravitational waves

Astrophysics with gravitational waves

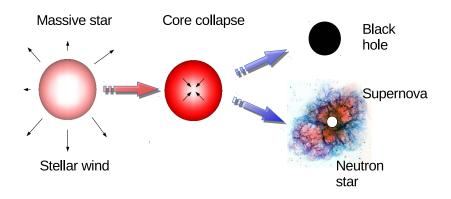
What can we learn about black hole formation?


Introduction

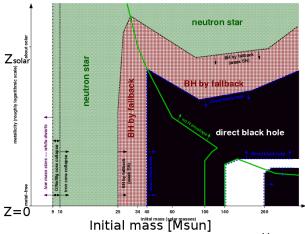
2 How to make a black hole


3 Constraining black hole formation with GW observations

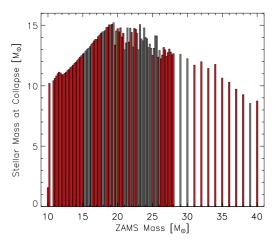
4 Conclusions and outlook


• Core collapse SN/direct collapse to a BH

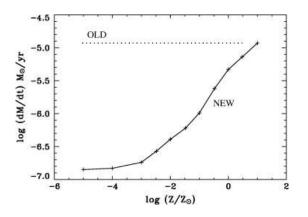
- Core collapse SN/direct collapse to a BH
 - Mass prior to core collapse: determined by stellar winds


- Core collapse SN/direct collapse to a BH
 - Mass prior to core collapse: determined by stellar winds
 - Explosion mechanism
 - Electromagnetic signatures (SN; X-ray binaries)
 [see talk by Felix Mirabel]

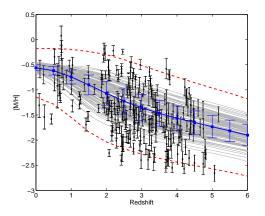
$$M_{BH} = f(M_{initial}, Z, ?)$$


Which parameters determine the remnant mass?

$M_{BH} = f(M_{initial}, Z, ?)$


Heger et al. (2003)

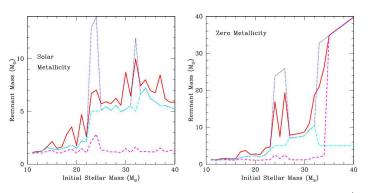
$M_{BH} = f(M_{initial}, Z, ?)$


Ugliano et al. (2012)

Mass prior to core collapse is determined by stellar winds

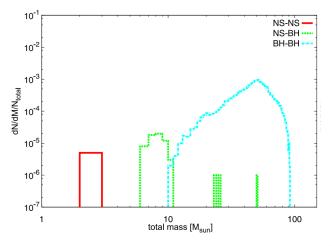
Cosmic metallicity evolution

Damped Ly- α systems data from Rafelski et al. (2012)



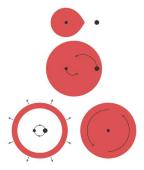
Dvorkin et al. (2015)

From massive stars to black holes


Woosley & Weaver (1995); Fryer et al. (2012); O'Connor & Ott (2011); Müller et al. (2012).....

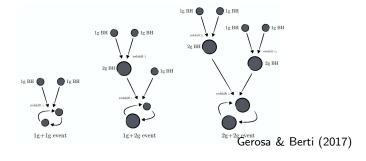
Chemically homogeneous evolution; Marchant et al. (2016); De Mink & Mandel (2016)

Fryer et al. (2012)


From massive stars to black holes: PopIII stars

Kinugawa et al. (2014)

From binary stars to binary BHs

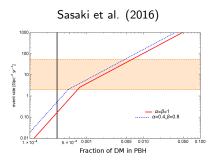

- Common envelope evolution Podsiadlowski 2001; Ricket & Taam (2012)
- Natal kicks
 Bonnell & Pringle (1995); Fryer & Kusenko (2006); Dominik et al. (2012)

Interactions in dense stellar environments

Rodriguez et al. (2015); Antonini & Rasio (2016); Mapelli (2016); O'Leary et al. (2016); Chatterjee et al. (2017); Gerosa & Berti (2017); Zaldarriaga et al. (2017); Fishbach et al. (2017); Park et al. (2017)

[see talk by Chunglee Kim]




Primordial black holes

• Primordial BHs can form deep in the radiation-dominated era

Bird et al. (2016); Sasaki et al. (2016); Nakama et al. (2017); García-Bellido (2017); Vuk et al. (2016)

[see talk by Letizia Sammut]

Introduction

2 How to make a black hole

Constraining black hole formation with GW observations

4 Conclusions and outlook

Observables vs. model parameters

What we can observe:

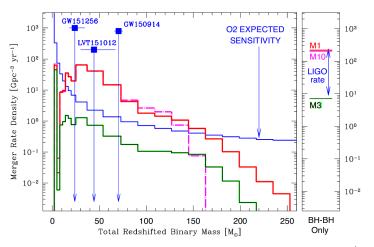
- Masses
- Spins
- Redshift z
- Sky location

Observables vs. model parameters

What we can observe:

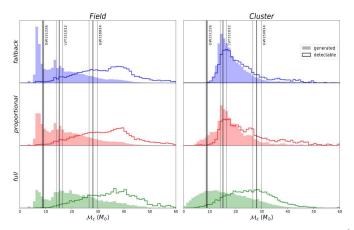
- Masses
- Spins
- Redshift z
- Sky location

What we need to constrain:


- Black hole formation scenario
 - Isolated core collapse
 - Multiple mergers in dense environments
 - Primordial black holes
 - Something else?
- Specific model parameters (common envelope, natal kicks, ...)

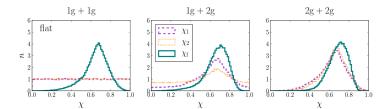
Model ingredients

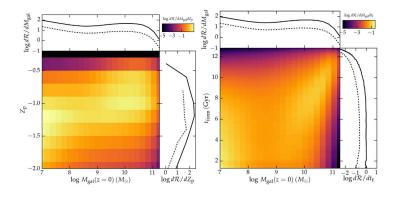
- Galaxy evolution, star formation rate, stellar mass distribution
- Stellar evolution, formation of binary black holes, merger rate
- Description of merger GW waveform
- Instrument sensitivity


Mass distribution: model parameters

Belczynski et al. (2016)

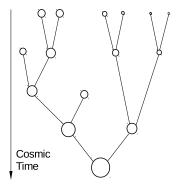
Mass distribution: model selection


Need at least ~ 100 detections to measure the branching ratio field-cluster

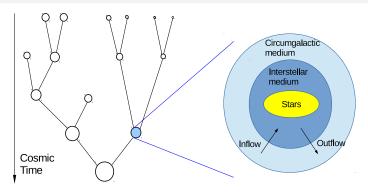

Zevin et al. (2017)

Spin distribution: model selection

After several mergers the effective spin converges to $\chi \sim 0.6-0.7$

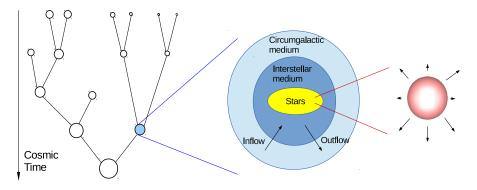


What are the host galaxies of BH mergers?


Lamberts et al. (2016)

Cosmological galaxy evolution model

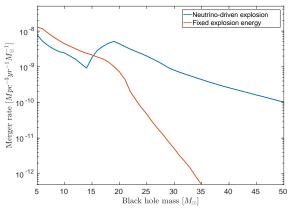
Merger tree of dark matter halos


Cosmological galaxy evolution model

Merger tree of dark matter halos

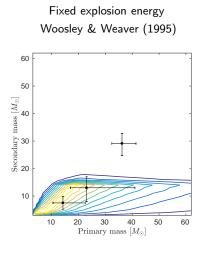
- Star formation rate
- Metal yields in stars
- End product of massive stars

Cosmological galaxy evolution model

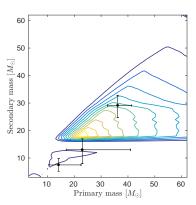


Merger tree of dark matter halos

- Star formation rate
- Metal yields in stars
- End product of massive stars

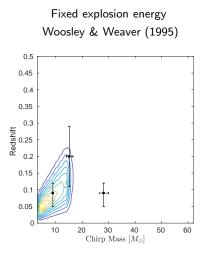

Merger rates vs. mass

Woosley & Weaver (1995) vs. Fryer et al. (2012)

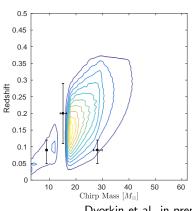


Dvorkin et al. (2016)

Detection rates: m_1 vs. m_2



Neutrino-driven explosion Fryer et al. (2012)



Dvorkin et al. in prep

Detection rates: M_{chirp} vs. z

Neutrino-driven explosion Fryer et al. (2012)

Dvorkin et al. in prep

Introduction

2 How to make a black hole

3 Constraining black hole formation with GW observations

Conclusions and outlook

Summary

An exciting time for astrophysics:

- Gravitational wave astronomy is expected to provide constraints on:
 - Stellar evolution (winds...)
 - SN explosion mechanism
 - Binary systems (common envelope...)
 - BH mergers in stellar clusters
 - PopIII stars, primordial BHs, ...

Summary

An exciting time for astrophysics:

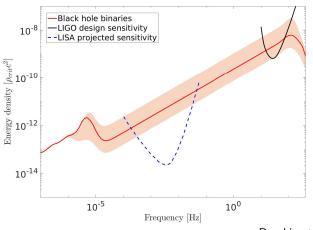
- Gravitational wave astronomy is expected to provide constraints on:
 - Stellar evolution (winds...)
 - SN explosion mechanism
 - Binary systems (common envelope...)
 - BH mergers in stellar clusters
 - PopIII stars, primordial BHs, ...
- Models are complex and involve various parameters: will need many detections (~ 100) and sofisticated analysis tools

Conclusions and outlook

Additional slides

Stochastic gravitational wave background

• The background due to unresolved mergers of binary BHs


Stochastic gravitational wave background

- The background due to unresolved mergers of binary BHs
- Dimensionless density parameter (energy density in units of ρ_c per unit logarithmic frequency)

$$\Omega_{\rm gw}(f_o) = \frac{8\pi G}{3c^2H_0^3} f_o \int dm_{bh} \int dz \frac{R_{\rm source}(z,m_{bh})}{(1+z)E_V(z)} \frac{dE_{\rm gw}(m_{bh})}{df}$$

 $R_{\mathrm{source}}(z,m_{bh})$ is the merger rate, dE_{gw}/df is the emitted spectrum

Stochastic gravitational wave background

Dvorkin et al. (2016)