Structure of Binary Neutron Star Merger Remnants

Wolfgang Kastaun

GWPAW17, Annecy, June 2, 2017

Overview

- Fluid flow & post-merger GW
- Remnant rotation profile & lifetime
- Relevance of initial NS spin

W. Kastaun, R. Ciolfi, B.Giacomazzo, Structure of stable binary neutron star merger remnants: A case study, Phys. Rev. D 94, 044060 (2016)

W. Kastaun, R. Ciolfi, A. Endrizzi, B. Giacomazzo, Structure of Stable Binary Neutron Star Merger Remnants: Role of Initial Spin, arXiv:1612.03671 (2016)

R. Ciolfi, W. Kastaun, B. Giacomazzo, A. Endrizzi, D.M. Siegel, R. Perna General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star,

Phys. Rev. D 95, 063016 (2017)

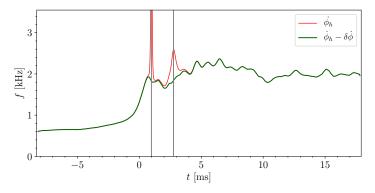
Fluid Flow

► Complex fluid flow after merger with several vortices

Fluid Flow

▶ Density perturbation, hot spots, and vortices strongly related

Fluid Flow


- Density perturbation, hot spots, and vortices strongly related
- Perturbation seems tied to vortex evolution
- Deformation by secondary vortices phase-shifted
- Partial cancellation of quadrupole moment contributions?

- ► Typical: very short minimum at merger
- Irregular-looking amplitude variations

- ▶ Typical: very short minimum at merger
- Irregular-looking amplitude variations
- ► One or more phase jumps

- ► Typical: very short minimum at merger
- Irregular-looking amplitude variations
- One or more phase jumps
- Explained as near-zero crossings of quadrupole moment

- Typical: very short minimum at merger
- Irregular-looking amplitude variations
- One or more phase jumps
- Explained as near-zero crossings of quadrupole moment
- Phase jump causes cancellation effects in Fourier spectrum

Rotation Profile

Common notion:

- Hypermassive remnants
 - Core rotates more rapid than outer layers
 - Collapse when differential rotation of core is reduced
- Supramassive remnants
 - Uniformly and rapidly rotating core
 - Collapse when angular momentum of core is reduced
- Lifetime related to angular momentum evolution of core

Rotation Profile

- Numerical simulations yield different picture
- Slowly rotating core
- ▶ Instead, **outer** layers approach Kepler orbital velocity

Rotation Profile

- Numerical simulations yield different picture
- Slowly rotating core
- Instead, outer layers approach Kepler orbital velocity
- ► Found for hypermassive, supramassive, stable mass range
- ► For different EOS, mass ratios, initial spins (aligned)

Remnant Lifetime

- ▶ Slow rotation → expect almost spherical core
- ▶ Radial profiles of remnant cores indeed similar to TOV cores ⇒ "TOV core equivalent"

Remnant Lifetime

- Found core equivalents up to maximum TOV mass
- Core mass increases over time
- ► Found collapse when core equivalent reached maximum mass

Remnant Lifetime

New picture emerges:

- Remnants cores similar TOV cores
- Surrounded by centrifugally supported equatorial bulge
- Angular momentum loss of core irrelevant
- Stability only depends on core mass
- Core mass changes if outer layers loose angular momentum
- Lifetime depends on evolution of the outer layers
- ⇒ More study needed

Influence of Spin

- Spin causes orbital hangup during inspiral
- ▶ Ballpark figure: $F_{\text{rot}} \pm 160 \text{Hz} \Rightarrow \pm 1$ orbit on last 4 orbits.

Influence of Spin

► Small changes in post-merger GW spectrum

Influence of Spin

- ► Small changes in post-merger GW spectrum
- ▶ Splitting of peak for spin alignment ↑↓

Thanks!