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Modeled searches for compact binaries

* Current deployed modeled searches for compact binaries are
restricted to aligned spin systems, that do not precess, and include
only the dominant [ = 2, m = +2 harmonics

* However the ability to detect precessing systems can be an important
discriminant for formation channels (e.g. common evolution vs
dynamical capture); likewise, higher-order modes can be important
for higher mass, high mass ratio systems (see talk by I. Harry)

* In this talk | describe a new technique under development for
including arbitrary modes, and the unanswered questions in its
implementation that we are still investigating



Preliminaries: Response at an interferometer

* The gravitational waveform received at an interferometer with
perpendicular arms may be written as:
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* Here we have separated out intrinsic parameters i from the extrinsic:
r,a,0,P, 1, ¢ and t,.

* The antenna pattern functions F, and F, are normally written as
trigonometric functions of the three angles, and the _,Y},,, are spin-
weighted spherical harmonics



Preliminaries: Statistics

* In colored Gaussian noise, the probability that a particular stream of
data s(t) is observed given that a signal h(t) is presentis

~L(s—h|s—h)
2 , Where the inner-productis defined as:

L

* For a statistic, we may either maximize the probability over the
extrinsic parameters (F-statistic; Jaranowski et al Phys. Rev. D58
063001) or marginalize (B-statistic; Prix & Krishnan Class. Quant. Grav.
26 204013)
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Comparing alighed spin to precessing & HOM

* |If we consider non-precessing systems where all modes with [ > 2 are
negligible, then the maximization over r, ¢, Y and t may be effectively
performed analytically, leading to the usual F-statistic. Maximization over
to can be efficiently accomplished using the Fast Fourier Transform

* |In coincident (as opposed to coherent) searches, we first analyze the data
in each interferometerindependently, and then combine triggers above a
threshold using a coincident statistic. When analyzing data at a single IFO
for aligned spin, we may also analytically maximize over sky location («, 6)
as well, leaving only intrinsic parameters to be searched over

* None of this analytic maximization works so straightforwardly when modes
otherthan [ = 2,|m| = 2 are significant



Overview of previous work

* Several authors considered template families for precessing signals
}Apostolatos; Grandclemént & Kalogera; Buonanno, Chen & Vallisneri

BCV2]).

* More recently, more sophisticated precessing models (SEOBNRv3: Pan et al
Phys. Rev. D89, 084006; IMRPhenomP: Hannam et al PRL 113, 151101)
have been proposed and used in parameter estimation.

e Building on BCV2, Pan et al developed the Physical Template Family search.
#Phys. Rev. D69, 104017) This search considered single-spin systems with all
ive [l = 2 modes, restricted by polynomial constraints. But those
constraints were expensive to solve and never fully implemented.

* Harry et al (Phys. Rev. D94 024012) proposed the Sky Max SNR search. It
analytically maximizes over sky location, and uses a grid search over the
usual intrinsic parameters as well as the inclination angle t.



Matrix elements and the rotation group

* |t was previously observed (Dhurandhar &Tinto MNRAS 234 663-676) that
the antenna pattern functions can be expressed as linear combinations of
the matrix elements of the rotation group, SO(3)

* |tis also true that the spin-weighted spherical harmonics can be expressed
in terms of these matrix elements:

4 o
Dy (8,6,9) = (~1)™y] 57 sYim (0, 6) 7

* So we can either set Y to zero, or introduce a second (redundant)
polarization angle (compare to Harry & Fairhurst, Phys. Rev. D83 084002)




New coordinates

* This observation means that we can re-express our first equation for
h(t) entirely in terms of modes depending on intrinsic parameters (in
the Fourier domain), a single amplitude, and matrix elements of two
elements of the rotation group: one describing the transformation
from the source to radiation frame, and another describing the
transformation from radiation to detector frame

* The familiar expressions correspond to coordinatizing SO(3) using
three Euler angles to describe a rotation. But we can maximize (F-
statistic) or marginalize (B-statistic) using whichever coordinates on
SO(3) are most convenient.



New coordinates (1)

* For our purposes, it is much more convenientto use Cayley-Klein or
guaternionic coordinates; they are also closely related to Euler-
Rodrigues coordinates.

* For ER coordinates, we specify a unit vector 7 and an angle 8. The
guaternionic and Cayley-Klein coordinates are then:

U= (ao — ?:Ofg)
ap = cost V = (ag — 7:011)
a; = sin 0 7i; for i € {1, 2,3} UT +VV =1



First result: polynomial expression

* It is now possible to appeal to the well-studied representation theory
of SO(3), and observe that in terms of the Cayley-Klein coordinates,
all matrix elements are polynomials. Moreover, we have seen that the

only constraint among these parameters is the single constraint UU +
V'V =1, which is also polynomial
* Thus, for any number of additional modes, maximizing over the

extrinsic angular variables can be transformed into maximizing a
polynomial, subject to a polynomial constraint

* When marginalizing over these variables, the measure is also
comparatively simple, if using uniform-in-volume priors



Example: single detector, precessing

e Consider the signal observed at a single IFO, for a precessing source
where all modes with [ > 2 are negligible. If we define:

then:

h(t) = A*Re [D2 5,ha(t) + D21 hai (2)
+D? yohoo(t) + D25 1he—1(t) + D25 _sha o(t)]
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Example (cont’d)

* In terms of the U, IV variables, can show:

D?,, o U* D?, , xUV?
D%, x U3V D?*, , xV*
D?,, x U?V?

e If we then defineX = AU,Y = AV, we have two unconstrained
complex coordinates, and:

h(t) = Re [hoo(t) X* + h21(t) X°Y + hoo(t) X°Y? + ho—1(t) XY° + ho_o(t) Y]
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Maximizing over extrinsic parameters

* Even in this simple case where we only consider a single detector, when we
minimize (s — h|s — h) over our X, Y variables, we will get an eighth-order
polynomial in two complex (equivalently, four real) variables. This is highly
non-trivial to solve!

* Currently, investigating best way to do this. Considering two techniques
from computational algebraic geometry, each of which have been used to
solve parametric systems. There is an expensive, off-line part of the
computation that only needs to be done once, and then a faster part that is
done for each instance of the problem (i.e., data realization)

* May require hierarchical approach: find points of interest with something
cheap to compute (e.g. quadrature sum of matched-filter with all modes)
and then deploy the maximization over a subset of candidates.



Extending to multi-detector

* Because the antenna functions can also be expressed in terms of
matrix elements, we can also consider data from multiple
interferometers and consider a statistic that either maximizes or

marginalizes ) (s — h|s — h) over all detectors

* Key new complication is that there is a time delay depending on the

(unknown) sky position. A few possibilities:
e Search over all sky positions: a coherent search (expensive)
* Treat timing of single IFO triggers as exact, to determine or constrain sky
position
 Model time-dependence of SNR series near the peak (trigger time) and so
express it analytically in terms of polynomial variables, and apply the same

techniques




Summary

* Including the effects of precession or higher-order modes could be
important for detecting interesting classes of signals.

* For both computational efficiency and sensitivity, we would like our search
to not just matched-filter against additional modes, but also quasi-
analytically maximize or marginalize over extrinsic parameters

* Naively, this looks daunting, as it involves complicated trigonometric
functions of the extrinsic variables

* A better choice of coordinates, however, can reduce this to a polynomial
optimization problem, which is well-studied in applied mathematics

e But still more work needed to know which solution technique is most
efficient, and how efficientit is
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