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Context: Quasinormal models resulting from the merger of stellar mass BHs, and learning 
as much as we can from post-merger (ringdown) signals …

Inspiral, Merger

Ringdown



Context QNMs from Binary Black Hole Mergers
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Inspiral, Merger Ringdown (Quasinormal Modes)

NR Waveform, 100 M Solar, 400Mpc, 
Equal mass, ~Non Spinning

The remnant black hole (BH) is highly perturbed, with gravitational wave radiation 
that rings down. One goal of gravitational wave astronomy is to use our theoretical 
knowledge of BH QNMs to learn more from detections, and determine the consistency 
(or inconsistency) of signals with GR.

( Mf, jf , ?)



Overview Black Hole Quasinormal Modes, Review and Updates

A. The current context of black hole Quasinormal Modes (QNMs)
•  QNMs as tools to help us learn about astrophysical BHs and Test GR

B. Review: QNMs and the fundamental questions about black holes
• Black hole stability (Perturbation Theory)
• Quasinormal mode structure (Kerr)

C. Review: Analytic and numerical relativity, key aspects
• Numerical Relativity vs Perturbation Theory
• QNM use in Binary BH (BBH) signal models

D. The current and new questions about BH QNMs 
• What can we learn with QNMs?
• When can we learn it?
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Inspiral, Merger

Ringdown (QNMs)

Current gravitational wave detections have been of black holes as 
described by GR — but there are many notable limitations: signal 

SNR, template accuracy, number of detections, etc ….
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Inspiral, Merger

Ringdown (QNMs)

Many questions persist — Test the No Hair Theorem? BH Charge? 
Matter? Consistency with Numerical Relativity? Beyond GR? 

… all stem from older and more fundamental questions …
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The Fundamental Questions about Black Holes
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?

Do  black holes exist in nature?



The Fundamental Questions about Black Holes

10

?

Do  black holes exist in nature?
Are black holes stable?�!

(i.e. BH Perturbation Theory)



Review: Black Hole Stability
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❖ Regge + Wheeler, Edelstein (1957) (ten years prior to Wheeler’s“black hole” terminology)

❖ Developed framework for applying stability analysis to Schwarzschild black 
holes

❖ Claimed to have proven stability (i.e. damped solutions), but did not 
consider the correct boundary conditions (coordinate singularity at r=2M)

❖ Kerr (1963) 
❖ Found solution to Einstein's field equations describing spinning black holes, 

parameterized by dimensionless spin,                    , and mass,      : 

g0µ⌫ = gµ⌫ + hµ⌫ ! g0µ⌫ = gµ⌫ � gµ↵g�⌫h↵� +O(h2)

�Rµ⌫ = 0 , hµ⌫ =
1X

L=1

LX

M=�L

10X

n=1

Cn
LM (t, r)(YLM )µ⌫(✓,')

ds2 =(1� 2Mr/⌃)dt2 + (rj (4M2sin2✓)/⌃) dtd'� (⌃/�)dr2 � ⌃d✓2

� (sin2 ✓)(r2 +M2j2 + 2M2j2r(sin2 ✓)/⌃)d'2

j = Sz/M
2 Mj = Sz/M

2 M
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❖ Vishveshwara (1969, 1970) (Schwarzschild metric)

❖ First to correctly apply open boundary conditions to 
the perturbative problem in Kruskal coordinates

Review: Black Hole Stability

x = r + 2M ln

⇣
r

2M
� 1

⌘

x

x ! 1x ! �1

lim
r!1

R(r) = 1/r

lim
j!0

�2Slm(✓,')

= �2Y lm(✓,')

❖ Teukolsky (1972), Teukolsky & Press (1973) (Kerr metric)

❖ Applied Newman Penrose formalism (1961) to the perturbation problem
❖ Presented stability analysis of (spinning) Kerr BHs
❖ Found separable solution with discrete spectra — the QNMs

�! Teukolsky’s Equations for          and                      
Characteristic equations must be satisfied by:  

R(r) �2Slm(✓,')R(r) �2Slm(✓,')

�!

!̃lm (QNM Frequency), and Elm (Separation Constant)

h+ � ih⇥ =

Z
d!

X

lm

R(r)�2Slm(✓,') ei!t
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Review: Black Hole Stability
❖ Leaver (1985) (Kerr metric)

❖ Analytic representation (4D nonlinear) for QNMs of Schwarzschild and Kerr
❖ Typically considered to be the most accurate method for QNM calculations
❖ Uses continued fractions to solve characteristic equations for QNM frequency

❖ 1985 — 2014 (Abbrev.)
❖ Various methods for investigation of QNM frequencies: e.g. WKB, Laplace 

transform, Numerical Integration (Schutz, Will, Nollert, Schmidt, Krivan, 
Laguna, many many others)

❖ Theoretical estimates for QNM measurability (Echeverria, Finn, Flanagan, 
Hughes, Cardoso, Berti, many others)

❖ Black hole thermodynamics (Bardeen, Bekenstein, Hawking, others; see 
Miriam’s talk on the Area Theorem)

❖ BBH QNM Excitations in Numerical Relativity ( Berti, Buonanno, Pan, Husa, 
Kamaretsos, Gossan, London, many others )
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Review: Structure of QNM Solution Space
❖ Leaver (1985) (Kerr metric)

❖ Analytic representation (4D nonlinear) for QNMs of Schwarzschild and Kerr
❖ Typically considered to be the most accurate method for QNM calculations
❖ Uses continued fractions to solve characteristic equations for QNM frequency

A schematic view of Leaver’s method for calculating QNMs

Choose BH mass, 
spin, azimuthal 

eigenvalue, m, and 
polar eigenvalue, l

Iteratively evaluate  
Leaver’s equations: 

(Separation Constant, 
Complex Frequency) —> 
“work function” value

QNM Solutions 
correspond to roots 

of the work 
function

4D Optimization problem:
❖ Complex valued QNM frequency: 
❖ Complex valued separation constant:

!̃lmn = !lmn + i/⌧lmn

Elmn

( M = G = c = 1 )
( approximated analytically by Berti et al )
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Review: Structure of QNM Solution Space

l=m=2, jf = 0.95746905

Example: Blue (Low work function values), Red (High). Using Berti’s approximation for the 
separation constants allows 2D visualization of QNM solution space
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Review: Structure of QNM Solution Space

Example: Blue (Low work function values), Red (High). Using Berti’s approximation for the 
separation constants allows 2D visualization of QNM solution space

l=m=2, jf = 0.95746905

Prograde QNMs: 
perturbations rotate with spin 

direction
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Review: Structure of QNM Solution Space

l=m=2, jf = 0.95746905

Example: Blue (Low work function values), Red (High). Using Berti’s approximation for the 
separation constants allows 2D visualization of QNM solution space

Retrograde QNMs: 
perturbations rotate against 

spin direction
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Review: Structure of QNM Solution Space

l=m=2, jf = 0.95746905

Example: Blue (Low work function values), Red (High). Using Berti’s approximation for the 
separation constants allows 2D visualization of QNM solution space

Fundamental QNMs 
(n=0)
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Review: Structure of QNM Solution Space

l=m=2, jf = 0.95746905

Example: Blue (Low work function values), Red (High). Using Berti’s approximation for the 
separation constants allows 2D visualization of QNM solution space

Fundamental QNMs 
(n=0)

Overtones, n>0 Overtones, n>0
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Review: Structure of QNM Solution Space

l=m=2, jf = 0.95746905

Example: Blue (Low work function values), Red (High). Using Berti’s approximation for the 
separation constants allows 2D visualization of QNM solution space

Fundamental QNMs 
(n=0)

Overtones, n>0 Overtones, n>0Power-law tails
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Review: Structure of QNM Solution Space

l=m=2, jf = 0.95746905

Example: Blue (Low work function values), Red (High). Using Berti’s approximation for the 
separation constants allows 2D visualization of QNM solution space

Fundamental QNMs 
(n=0)

Overtones, n>0 Overtones, n>0Power-law tails

Horizon Modes
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Review: Structure of QNM Solution Space

h+ � ih⇥ =
1

r

X

lmn

�2Slmn(✓,') Almne
�i!̃lmnt

Nontrivial behavior in the limit extremal BH spin ( jf ~ 1): 
solution branching, and nonzero/zero damping

Blue (Low work function values), Red (High). Here consider (l,m)=(2,1), and we vary the 
black hole spin in the nearly extremal regime between jf = 0.9837 and jf = 0.9998. (e.g. A. 
Zimmerman et al 2015)

(l,m) = (2,1)
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Review: Structure of QNM Solution Space
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Nontrivial behavior in the limit extremal BH spin ( jf ~ 1): 
solution branching, and nonzero/zero damping

Blue (Low work function values), Red (High). Here consider (l,m)=(2,1), and we vary the 
black hole spin in the nearly extremal regime between jf = 0.9837 and jf = 0.9998. (e.g. A. 
Zimmerman et al 2015)

(l,m) = (2,1)
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Review: Structure of QNM Solution Space
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(l,m) = (2,1)
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Review: Structure of QNM Solution Space
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Review: Structure of QNM Solution Space
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Nontrivial behavior in the limit extremal BH spin ( jf ~ 1): 
solution branching, and nonzero/zero damping

Blue (Low work function values), Red (High). Here consider (l,m)=(2,1), and we vary the 
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Review: Structure of QNM Solution Space

h+ � ih⇥ =
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r
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Nontrivial behavior in the limit extremal BH spin ( jf ~ 1): 
solution branching, and nonzero/zero damping

Blue (Low work function values), Red (High). Here consider (l,m)=(2,1), and we vary the 
black hole spin in the nearly extremal regime between jf = 0.9837 and jf = 0.9998. (e.g. A. 
Zimmerman et al 2015)

(l,m) = (2,1)

Damped QNMs
Zero-Damped QNMs
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Recap: Black Hole Stability

❖ Select Topical Reviews
❖ “On quasinormal modes of asymptotically anti-de Sitter black holes” (Warnick 2013)
❖ “Quasinormal modes of black holes and black branes” (Berti et al 2009)
❖ “Quasinormal modes of stars and black holes” (Kokkotas & Schmidt 1999)
❖ “Quasinormal modes: the characteristic “sound” of black holes and neutron 

stars” (Nollert 1999)

However, for rigorous QNMs to be useful in LIGO data analysis, there is an ongoing 
need to synthesize analytic QNM theory with Numerical Relativity results. 

❖ Non-extremal Kerr BHs are stable under generic perturbations. 
❖ There is a significant amount structure in the QNM solution space. This enhances the 

prospects for testing GR with astrophysical QNMs. 
❖ Of all QNM solutions, the fundamental modes are the least-damped, and thus are the 

top priority for analysis of data from experiment. 



Review: QNM use in BBH signal models

GW detection and parameter estimation are significantly assisted by model (template) 
signals. The 2005 advances in Numerical Relativity (NR) (eg Baker et al) have enabled 
GW models that encompass Inspiral, Merger and Ringdown (IMR). Despite the success 
of these models, there have been (and remain) difficulties relating to ringdown …
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Inspiral, Merger Ringdown (Quasinormal Modes)

NR Waveform, 100 M Solar, 400Mpc, 
Equal mass, ~Non Spinning

( Mf, jf , ?)



Review: QNM use in BBH signal models
Overview
❖ Starting with Ajith’s 2007 work, Kerr QNMs have been used to parameterize 

Phenomenological waveform models.
❖ IMRPhenomD (Khan et al and Husa et al 2015) and the related IMRPhenomP 

(Schmidt, Hannam et al 2013) have been heavily used in the analysis of GW150914 
and subsequent events.

❖ In parallel, Effective One Body (EOB) approaches to BBH inspiral have been 
extended using Kerr QNMs (Damour, Buonanno, Pan, Taracchini, others )

❖ The related SEOBNRv2 (Taracchini et al 2013) has also been heavily used in post-
detection LIGO data analysis.

All of these models require the tuning to NR simulations to incorporate how much each 
QNM is excited. However, until recently, there was no general and robust way to 
model fundamental QNM excitations from NR simulations ….

Status



Review: QNM use in BBH signal models
The problem lies in a difference of perspective

❖ Numerical Relativity: Spherical Harmonic Multipoles,                 (Orthogonal in l)

❖ a

❖ b

rh = r(h+ � ih⇥) =
X

l,m

hNR
lm �2Ylm(✓,�)

hNR
lm =

Z

⌦
rh�2Ȳlmd⌦

rh = r(h+ � ih⇥) =
X

l,m

hNR
lm �2Ylm(✓,�)

hNR
lm =

Z

⌦
rh�2Ȳlmd⌦

❖ Perturbation Theory: Spheroidal Harmonic Multipoles,                (Not orthogonal in l)

❖ a

❖ b

rh =
X

lmn

hPT
lmn �2Slm(!̃lmnjf , ✓,�)

hPT
lmn = Almn [e

i!̃lmnt]

rh =
X

lmn

hPT
lmn �2Slm(✓,�; !̃lmnjf )

hPT
lmn = Almn [e

i!̃lmnt]

NR
�2Ylm(

rh =
X

lmn

hPT
lmn �2Slm(✓,�; !̃lmnjf )

hPT
lmn = Almn [e

i!̃lmnt]

The Spherical multipoles of NR 
are sums of QNMs 
                   — i.e. “mode mixing”

! hNR
lm =

X

l0n

Al0mne
i!̃l0mnt

Z

⌦
�2Ȳlm�2Sl0mnd⌦



Aside: Mixing of QNMs in NR Waveforms

Effect on time domain ringdown. Figure: NR ringdown waveform for (l,m)=(3,2), equal 
mass, non-spinning.
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In the time domain, the mixing of QNMs due to use of a spherical basis causes 
“beating”, while a simple decaying sinusoid might naively be expected. This effect 
complicates the time domain modeling of post-merger higher multipoles.

The Spherical multipoles of NR 
are sums of QNMs 
                   — i.e. “mode mixing”

! hNR
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Z

⌦
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Aside: Mixing of QNMs in NR Waveforms

Effect on frequency domain IMR waveform. Figure: NR IMR waveform for (l,m)=(2,2) 
and (3,2), equal mass, dimensionless aligned spins of 0.85 (z-hat).

There are similar complications for the frequency domain IMR waveform.

The Spherical multipoles of NR 
are sums of QNMs 
                   — i.e. “mode mixing”

! hNR
lm =

X

l0n

Al0mne
i!̃l0mnt

Z

⌦
�2Ȳlm�2Sl0mnd⌦



Overview
❖ Early studies focused primarily on the (l,m)=(2,2), where mode mixing is minimal. 

(2005-2013)
❖ Kamaretsos et al (2011) modeled the QNM amplitudes for non-spinning BBH systems 

in the Spherical basis (effectively treating the remnant as non-spinning)
❖ L. London et al (2014) developed a method for estimating Spheroidal content from NR 

waveforms, and modeled QNM amplitudes and relative phases for non spinning 
systems using complex polynomial regression.

❖ L. London et al (paper in preparation) have used QNMs to develop the first IMR 
waveform model for non-precessing BBH sources. (See Sebastian Khan’s talk)

There is a clear need to extend result to precessing BBH systems. Towards this goal, I 
have recently developed a effective-spin model for QNM excitation, which is to be used 
as the GR prediction when perform more general data analysis on astrophysical signals.

Update — A QNM Waveform Model for Non-Precessing BBH Systems

Review: QNM use in BBH signal models



There is a clear need to extend result to precessing BBH systems. Towards this goal, I 
have recently developed a effective-spin model for QNM excitation, which is to be used 
as the GR prediction when perform more general data analysis on astrophysical signals.

Update: A QNM Waveform Model for NonPrecessing Systems

Example usage: Estimated QNM amplitude (GR prediction) for GW150914

(l,m)=(3,3)
QNM Amplitude Relative Phase



New (more recent) Questions
❖ Can we distinguish BH QNMs from BH mimickers? (e.g. Cardoso et al 2016)
❖ Beyond GR effects? (See Archisman’s talk on Thursday)
❖ What will be needed to model QNM excitations for precessing systems? 
❖ Will the 2nd order (nonlinear) QNMs be relevant for GW astronomy? (London et al 

2014)

Current and New Questions about BH QNMs
Current Questions
❖ Given GR predictions for QNM excitations (e.g. London et al 2014)

❖ Can we perform a test of the No Hair Theorem? (See Chandra’s talk today, and 
Archisman’s talk on Thursday)

Can we “coherently stack ringdown signals” to improve statistics? This has been 
preliminarily investigated by Yang, Yagi et al (2017) (also see Felipe’s talk)

Can we use QNM information to develop IMR models with higher multipoles (See 
Sebastian’s talk)



(Figure from London et al 2014)
❖ Most evidence suggests extraction QNM signals will be routine with the Einstein 

telescope (e.g. Maselli et al 2017, Gossan et al 2011, Berti, Cardoso, London, others)
❖ However, there are always new possibilities on the horizon …

When can we expect to confidently extract multiple QNMs?

q=2, 100Mpc,
 350Msol



The Quasi-normal Modes of Black Holes  
Review and Recent Updates

Concluding Remarks

❖ We’ve seen that the topic of BH perturbation theory grew out of pondering the very 
existence of BHs in nature.

❖ QNM solution space is generally rich with features. The fundamental QNMs are the 
least damped, and therefore the most likely to be observed first.

❖ QNM solutions represent eigenfunctions of perturbed Einstein equations, but NR 
simulations are currently needed to inform how much each QNM is excited.

❖ Models of QNM excitation can assist with tests of GR, and inform IMR signal 
models (some updates in later talks)

❖ The extraction of astrophysical QNMs (beyond l=m=2) may take some time 
(Einstein Telescope), but there is some uncertainty about how much …
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Lionel London                                    GWPAW, Annecy France                                            May 31st 2017

Context: Quasinormal models resulting from the merger of stellar mass BHs, and learning 
as much as we can from post-merger (ringdown) signals …

Inspiral, Merger

Thanks folks!


