ENHANCING UN-MODELLED GRAVITATIONAL WAVE SEARCHES

<u>P. Bacon</u>¹, Gayathri V², E. Chassande-Mottin¹, A. Pai², F. Salemi³, G. Vedovato⁴

¹APC CNRS/IN2P3, France ² IISER-TVM, India ³AEI, Germany ⁴ INFN, Italy

30 May, 2017

MOTIVATIONS

Current modelled searches for compact binary mergers are based on the most likely astrophysical scenarios:

Quasi-circular orbits, aligned spins, low mass ratio

But parts of this parameter space remain uncovered. This is where burst searches play a major role.

Include higher order physical models in searches when available:
Eccentricities, high mass ratios, precession

We present an informed burst search method potentially applicable to poorly investigated kinds of systems. Demonstrated here with binary black hole systems.

COHERENT WAVEBURST [1]

[1] Klimenko et al Phys. Rev. D 93, 042004 (2016)

WAVEGRAPH BASICS – PIXEL SELECTION

Map waveform template to a chain of time-frequency pixels.

Selection of representative time-frequency pixels from sparse representation of targeted

Wavegraph basics – Graph

Obtain set of pixel chains from many templates that sample the parameter space

Chains are combined into a graph

WAVEGRAPH BASICS - SEARCH

Time-frequency pixel obtained from observational data h(t) are inserted into the graph

Cluster of pixels extracted over the whole graph.

maximisation of the energy carried by the cluster.

Search for a cluster is a longest path problem: dynamic programming algorithm

Mock Data Challenge

18,000 binary black hole waveforms using Spinning Effective One Body-Numerical Relativity model [1] Isotropically distributed and uniform in volume Mass range compatible with search graph

Compare ability of CoherentWaveBurst (current version used for LIGO O2 run) and CoherentWaveBurst+Wavegraph to recover injections

in simulated **Gaussian noise** for advanced LIGO (H-L) and Virgo detectors at design sensitivity.

- > Selection cuts fixed at fixed false alarm rate (\sim 3 events / yr):
 - Signal coherence over interferometer network $c_c > 0.7$
 - Signal strength over network $\rho>5.1$ for CoherentWaveBurst and $\rho>5.2$ for Coherent WaveBurst + Wavegraph

[1] A. Taracchini et al, Phys. Rev. D, 89(6):061502:1-6, 2014

REVIEW OF MISSED AND RECOVERED INJECTIONS

AVERAGE SENSITIVE RANGE

CoherentWaveBurst

CoherentWaveBurst+Wavegraph

Correlation vs. injected SNR

Wavegraph extracts more relevant pixels with respect to CoherentWaveBurst.

Selected pixels are less likely associated to nearby noise fluctuations, and have thus a larger overall correlation between detectors.

CONCLUSION

Wavegraph is a new pixel clustering scheme dedicated to Coherent WaveBurst Drive pixel selection using astrophysical waveform models

➢ For binary black holes, Wavegraph enhances the sensitive reach; ~20-25 % in detection rate Pixels selected by Wavegraph have a larger correlation between detectors

Caveat: preliminary! Results obtained using Gaussian noise Results using real data will strongly depends on glitch rejection

Graph generation can potentially be generalized to other kinds of systems

• Plan to apply Wavegraph to highly eccentric binary systems

BACKUP SLIDES

- > BKG: CWB & WG
- > Recovered injection example
- > CWB in a nutshell
- > Demonstration of Matching pursuit.

BACKGROUNDS

RECOVERED INJECTION - EXAMPLE

Injected sNR = 26

CWB+WG (171 pixels)

CWB (167 pixels)

CoherentWaveBurst

MATCHING PURSUIT : 0TH ITERATION

Matching pursuit : 1^{st} iteration

Matching pursuit : 2^{nd} iteration

Matching pursuit : 3^{RD} iteration

Matching pursuit : 4^{TH} iteration

MATCHING PURSUIT : FINAL ITERATION

MATCHING PURSUIT : FINAL ITERATION

