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Why test general relativity?

• GR is non renormalisable 

• higher order terms in the action 

• Dark matter & dark energy 

• signature of modified gravity? 

• GR is extremely well tested in 
between these regimes (Will, 
arXiv:1403.7377, Psaltis, arXiv: 
0806.1531)
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Weisberg & Taylor, arXiv:0407149 
Kramer+,arXiv:0609417
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What to test for?
• Alternative theories 

• Introduce extra degrees of freedom: 

• additional fields 

• higher-curvature terms 

• Challenge GR assumptions: 

• Lorentz invariance 

• Equivalence principle 

• Need tests in the strong-field
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Berti+,1501.07274

Lovelock theorem: In 4D, the only divergence free 
symmetric rank-2 tensor constructed only by the metric and 
its derivatives up to 2nd order and preserving 
diffeomorphism invariance is the Einstein tensor plus a 
constant.
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Gravitational strong-field

• Field strength 

• Curvature (Kretschmann scalar)
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Baker+,arXiv:1412.3455

✏ =
GM

c2R

⇠ = (R↵���R
↵���)1/2

• Gravitational waves from binary 
black holes are the optimal probes
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Gravitational strong-field

• Field strength 

• Curvature (Kretschmann scalar)
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Yunes+,arXiv:1603.08955

✏ =
GM

c2R

⇠ = (R↵���R
↵���)1/2

• Gravitational waves from binary 
black holes are the optimal probes

• Space-time is dynamic 
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Gravitational waves
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• In GR, gravitational waves (GW) are wave 
solutions to Einstein’s equations generated from 
time varying mass quadrupoles and propagating 
at the speed of light 

• The GW signal is a messenger carrying 
information about  

• binary dynamics and component nature 

• non-linear dynamics of space-time 

• final object nature 

• Matching observed data with a solution to 
Einstein’s equations allows inference of all of the 
above

LVC, arXiv:1602.03837
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Gravitational wave solutions in GR

• Binary black holes solutions are 
constructed combining:  

• post-Newtonian theory in the weakly 
non-linear inspiral regime 

• direct numerical solution in the 
highly non-linear merger regime 

• perturbation theory in the ringdown 
regime

7
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Strong-field GR solutions
• Accurate solutions obtained by direct 

integration 

• Formulation and implementation highly non-
trivial 

• Computationally challenging 

• Numerical solution used to inform and 
complement analytical formulations: 

• Effective one body (Buonanno & Damour, 
arXiv:9811091, Bohe+,arXiv:1611.03703) 

• Phenomenological (e.g. Khan+,arXiv:
1508.07253)
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Gµ⌫ = 8⇡Tµ⌫

few weeks later
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GW templates in GR

• Analytical, parametric description of 
GW solution in GR 

• Suitable for detection and parameter 
estimation analyses
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h(f ; ✓) = A(f ; ✓)ei�(f ;✓)

�(f ; ✓) ⌘ �(f ;m1,m2,~s1,~s2)
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GW in alternative gravity
• Alternative to GR can introduce extra-fields, curvature terms, challenge GR pillars, … 

• Almost no full solution in non-GR known 

• GW phase is modified: 

• non-GR action (extra fields, higher curvature, …): no full non-linear description, only 
post-Newtonian  

• Propagation (Lorentz violations, graviton mass, …): GR-like BBH dynamics, but 
modified GW propagation (see Samajdar’s talk) 

• non-GR BHs (extra-fields, exotic objects):  

• tidal deformability  

• ringdown spectrum (see London, Cabero and Ghosh’s talks) 

• Echoes (see Nielsen and Abedi talks)

10
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Coalescence analysis
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• The detector output is linear 

• where            is the gravitational wave strain and         is the noise 
time series 

• The noise is a zero-mean stationary Gaussian stochastic process 

• The probability of a given noise realisation 

• The probability of a data realisation given a GW signal

< n(f)n(f 0) >=
1

2
S(f)�(f � f 0)

d(t) = h(t; ✓) + n(t)

h(t; ✓) n(t)

(a|b) = 4Re

Z
df

a⇤(f)b(f) + a(f)b⇤(f)

S(f)

�

p(n) ⇠ e�(n|n)/2

p(d) ⇠ e�(d�h|d�h)/2

SNR =
p

(d|h)
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Residuals

• After subtraction of the best fit GR waveform, the 
residuals must be consistent with Gaussian 
noise 

• Use un-modelled methods (Cornish & 
Littenberg, arXiv:1410.3835) to search for 
coherent power in the residuals 

• GW150914 residual SNR < 7 at 95% confidence 

• Match between GW150914 and the best GR 
template > 96%
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Coalescence analysis II
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• The signal model            depends on a set of 
parameters   

• D=9 for non-spinning binaries: masses, 
orientation, sky location, reference time and 
phase, luminosity distance 

• D=15 in general: spin vectors 

• More parameters for extra physics (e.g. BH 
charges, tests of GR, tidal effects, etc…) 

• Inference done via Bayes’ theorem 

• The problem is tackled using stochastic samplers 
(Veitch+,arXiv:1409.7215) 

h(t; ✓)
✓ priorposterior

likelihood

evidence
p(✓|d,H, I) = p(✓|H, I)

p(d|✓, H, I)

p(d|H, I)

few days later

LVC,arXiv:1602.03840
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Parametrised tests of GR
• GW waveforms are expressed in terms of effective series, 

for the Phenom family: 

• Modified theories of gravity change the series (e.g. PPE: 
Yunes & Pretorius, arXiv:0909.3328, Cornish+,arXiv:
1105.2088) 

• Perturb the GW phase around GR (Li+,arXiv:1110.0530, 
Agathos+,arXiv:1311.0420) 

• Bound violations by computing posterior distributions for 
the        in concert with the physical parameters of the 
system
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Post-Newtonian constraints
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• Constraints not achievable by any other means 

• Can be mapped to the space of specific theories (e.g. Yunes+,arXiv:
1603.08955)
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Constraints on space-time dynamics
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Inspiral Merger-ringdown
Energy/Frequency LVC,arXiv:1602.03841 

LVC,arXiv:1606.04856

• Only constraints on space-time 
dynamics 

• Posterior distributions for        
show no evidence for violations 
of GR

�'̂j
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Reconstructed waveform consistency
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• If GR is verified, the recovered GR 
waveform must be self-consistent 

• Numerical solution provide predictions for 
spin and mass of remnant starting from the 
parents ones (e.g. Healy+, arXiv:1406.7295) 

• Verify self-consistency by comparing final 
mass and spin predicted from the “inspiral” 
with the ones inferred from the “post-
inspiral” (Ghosh+,arXiv:1602.02453)
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Reconstructed waveform consistency

• Re-parametrise in terms of relative 
differences 

• Final object has properties consistent with 
Kerr BH 

• No violations of GR observed
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Tests on the nature of the final object

• Ringdown signal for GR BHs is well 
understood 

• Central frequencies          and decay 
times         are functions of BH mass 
and spin only (the “no-hair” theorem, 
Berti+, arXiv:0512160) 
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Tests on the nature of the final object

• Multiple modes detection allows tests of 
BH nature and “no-hair” theorem (e.g. 
Gossan+, arXiv:1111.5819, 
Meidam+,arXiv:1406.3201, see also 
Cabero and Ghosh talks) 

• Inference critically dependent on starting 
time  

• Single mode detection in GW150914, 
consistent with GR solution
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Propagation tests: massive gravity

• Families of alternative theories modify the 
propagation of GW (see Samajdar’s talk) 

• Massive gravity (e.g. Will, arXiv:9709011) 

• GW phase affected 

• GW constrains gravitons Compton 
wavelength
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Near future

• Measured rate grants several more 
BBH detections 

• Rate of BBH mergers 9–260 Gpc−3 
yr−1 

• High SNR sources 

• More detectors 
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Additional polarisation states
• The presence of additional polarisation states is a 

general feature in extensions of general relativity 

• Detection of non-tensor polarisations is a 
smoking gun for violations of GR 

• More than 2 detectors or EM counterpart 
necessary

23

h = F+h+ + F⇥h⇥

h = Fshs

LVC,arXiv:1602.03841Will, arXiv:1403.7377
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Improved constraints

• Improved constraints on space-time 
dynamics 

• Improved constraints from waveform 
consistency test (Ghosh+,arXiv:
1602.02453) 

• Improved constraints from 
propagation of GW on graviton 
Compton wavelength (Del 
Pozzo+,arXiv:1101.1391)

24
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Prospects for detection of GR violations
• Detection of small GR violations using Bayesian odds ratio (Li+,arXiv:1110.0530, 

Agathos+,arXiv:1311.0420)

25

individual sources catalogs of 15 sources
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“No hair” theorem

• Detection of more than one ringdown 
quasi-normal mode (QNM) allows 
independent determinations of the 
remnant mass and spin 

• Constrain variations around expected 
GR solutions 

• “no-hair theorem” test 

• Second law of BH dynamics

26
Gossan+,arXiv:1111.5819



Walter Del Pozzo GWPAW 2017, Annecy, France

Far future

• LISA will observe O(100) of BBH 
systems 

• Synergy LIGO+LISA 

• Improved GR tests (e.g. Vitale, arXiv:
1605.01037) 

• Strong dipole radiation constraints (e.g. 
Barausse+, arXiv:1603.04075)

27
Sesana,arXiv:1602.06951
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Summary
• The era of GW astrophysics is officially open 

• First glimpse at space-time extreme regimes: 

• BBHs behave just like GR predicts

• Just the beginning:  

• many more detections in the future 

• improved sensitivities 

• multi-wavelength studies 

• Look forward to a prolific season in gravitational 
physics
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