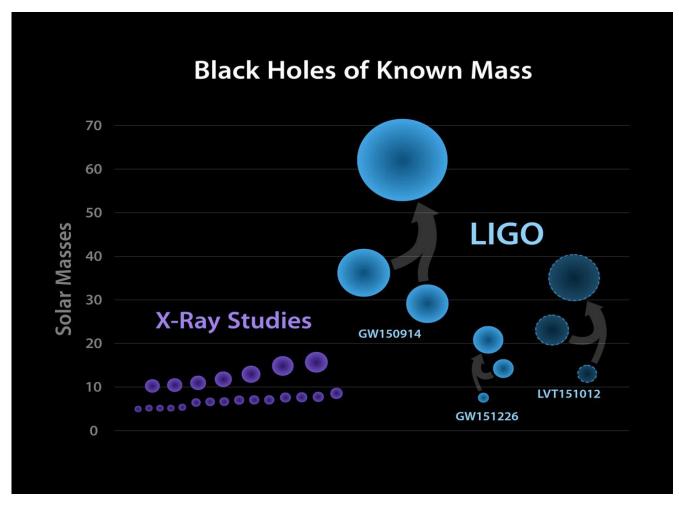
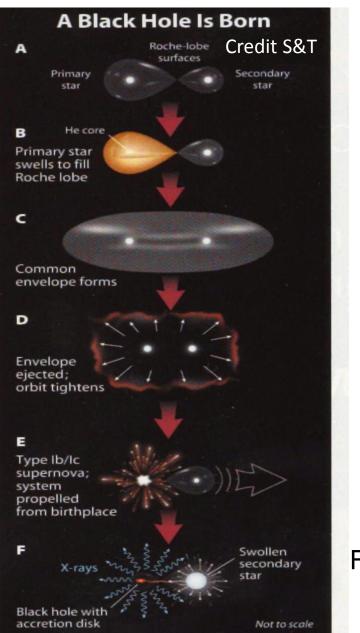
THE FORMATION OF STELLAR BLACK HOLES

Félix Mirabel CEA-France & IAFE-Argentina


IMPACT OF STELLAR BHs:

- First in the context of cosmology Mirabel+ (2011) & N&V in Nature (Haiman)
- Now in the context of GW astrophysics Invited review in New Astronomy Reviews (in press)

http://dx.doi.org/10.1016/j.newar.2017.04.002 http://arxiv.org/abs/1609.08411


SYNERGY BETWEEN X-RAY AND GWs STUDIES

The first detection of GWs produced surprise because of the high BH masses and BH-BH merger rates

I will show that what we know from X-ray studies, in particular, from the BH kinematics & metallicity dependence, the estimated BH masses & BH merger rates inferred from GWs should be large

INSIGHTS ON BH FORMATION FROM THE KINEMATICS OF BH-XRBs

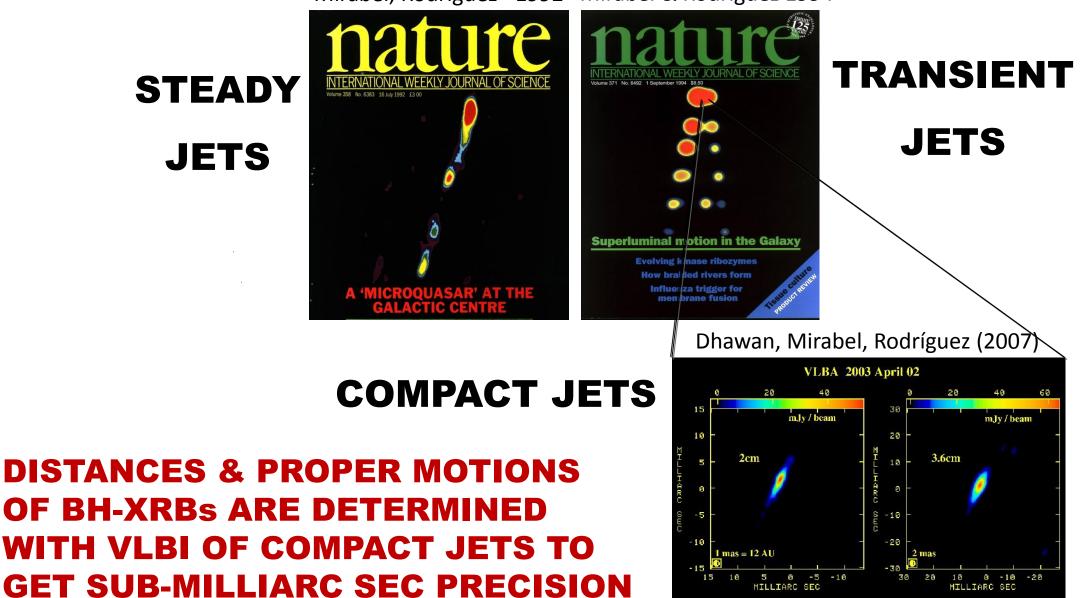
CORE COLLAPSE MODELS OF NSs and BHs FORMATION:

Are stellar black holes formed with similar Natal Kicks as NSs? (Fryer & Kalogera 2001; Woosley & Heger; Nomoto+; Sukhbold+ 2016...

Important question because

If BHs were born with the same kick distribution as neutron stars the merger rate of BBHs would decrease by a factor of ~20 relative to BHs being born with no energetic SNe and Natal kicks

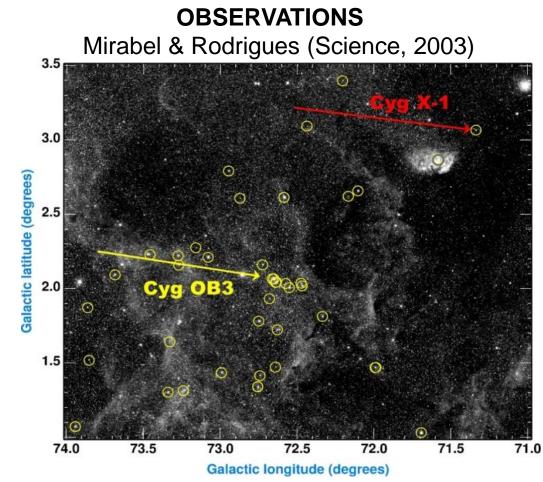
(Dominik, Belczynski, Fryer 2012)


TO DETERMINE NATAL KICKS OF BHs THE VELOCITIES OF BH-XRBs IN 3 DIMENSIONS ARE REQUIRED (Mandel 2016)

From $3x10^8$ BHs in MW, 20 BHXRBs known, 5 BH-µQSOs with 3D velocities

Mirabel, Irapuan Rodrigues et al. (2001-2009)

JETS IN ``MICROQUASARS"


Mirabel, Rodriguez+1992 Mirabel & Rodríguez 1994

MILLIARC SEC

MILLIARC SEC

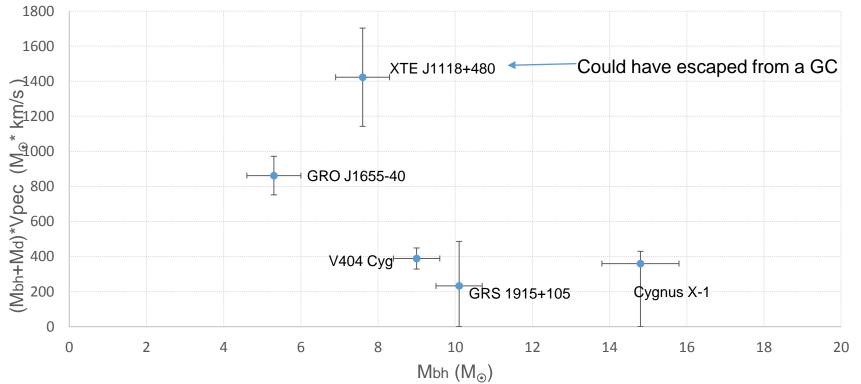
TWO BLACK HOLES FORMED BY DIRECT COLLAPSE

- Cygnus X-1: Mbh~15 M_o; Mdon ~19 M_o; V_p< 9±2 km/s \Rightarrow <1 M_o in SN; Mprog> 40 M_o; Mlost ~25 M_o in Wolf Rayet
- **GRS 1915+105:** Mbh~10 M_{\odot}; V_p=22±24 km/s \Rightarrow Galactic diffusion

• Stars of ~40 M_{\odot} and Z~Z_ $_{\odot}$ may collapse directly as BHs

THREE RUNAWAY BLACK HOLES

XTE J1118+480: $M_{BH} \sim 7.6 \pm 0.7 M_{\odot} M_{*} \sim 0.5 \pm 0.3 M_{\odot}$ (b = 62.3°; z = 1.5 kpc); **Vp=183±31 km/s**


Mirabel, Dhawan, Rodrigues et al. (Nature 2001) GALACTOCENTRIC ORBIT (230 Myrs) Yellow: Sun White: binary BH

Binary & single star interaction in a cluster? Dynamical mechanism. Credit: Carl Rodriguez

or Ejection of BHXRB by SN of a nearby star? e.g.in a triple system by Blaauw mechanism

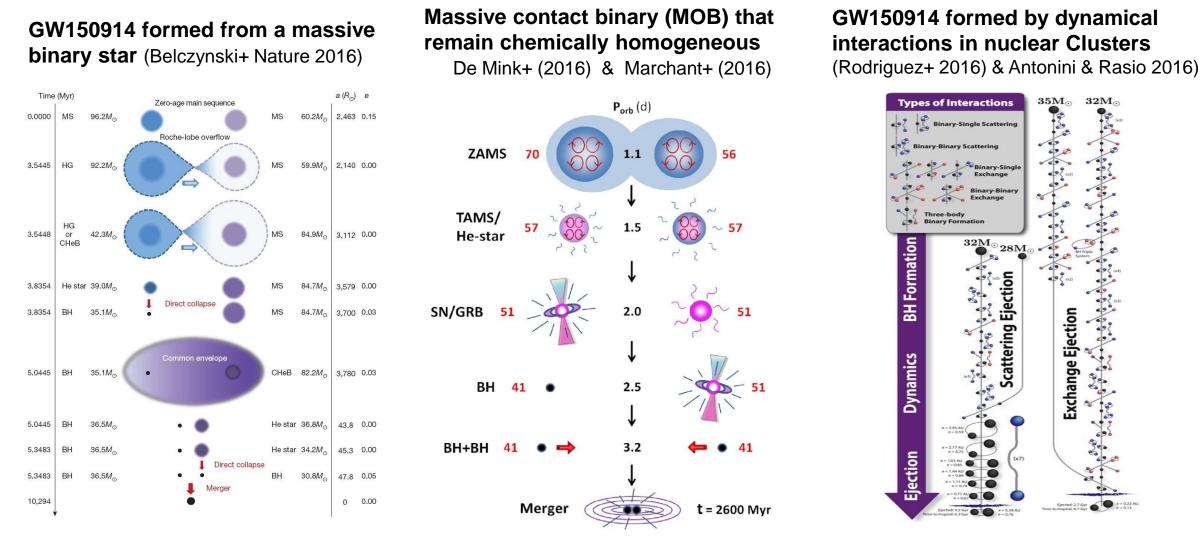
GRO J1655-40: M_{BH} ~5.3±0.7 M_{\odot} M_{*}~2.4±0.7 M_{\odot} ; D=1-3 kpc; V_p =112±18 km/s (Mirabel 2002) **V404 Cyg:** M_{BH} ~9.0±0.6 M_{\odot} M_{*}~0.75±0.25 M_{\odot} ; V_p = 39.9±5.5 km/s (Miller-Jones+ 2015) HOWEVER, THE RUNAWAY VELOCITIES CAN BE TRIGGERED BY DIFFERENT MECHANISMS

RUNAWAY VELOCITIES OF BH-XRBs vs BH MASS

- Expected from current models of BH formation
- XTE J1118+480 is at b = 62° and z=1.5 kpc from the disk

- If born with SN kicks or NKs, it is intriguing that except XTE J1118+480, the components of the runaway velocities perpendicular to the Galactic disk are 2.1±1, 4±1, 6±2, and 6±1 km s⁻¹. For GRO J1655-40 Vp=112±18 km s⁻¹ and 2.1±1 km s⁻¹. Why should be a runaway preferential direction?
- BHs of M_{BH} >10 M_{\odot} are formed by direct collapse, but it is uncertain how BHs of M_{BH} <10 M_{\odot} are formed. This result from BH-XRBs observations would be qualitatively consistent with high BBH merger rates inferred from GWs.

BH FORMATION AS FUNCTION OF Z & z HAS BEEN OBSERVATIONLLY CONFIRMED


- In the Local Universe, HMXBs are ~10 times more numerous per unit star formation in galaxies with Z < 0.2 Z_☉ than in solar-metallicity galaxies (Douna, Pellizza & Mirabel 2016)
- From the Chandra Deep Field South, due to the declining Z with increasing redshift, the X-ray luminosity due to HMXBs in galaxies out to z=2.5 is: L_{2-10 keV} (HMXB)/SFR ∝ (1 + z) (Lehmer+ 2016)
- The CIB-CXB coherence require that at least 10%–15% of the CIB sources are accreting BHs (Cappelluti+2013; Kashlinsky 2016) which suggests that BH-XRBs formed prolifically during re-ionization (Mirabel+ 2011)
- A recent model predicts substantially larger BH masses of ~25, 60 and 130 M_{\odot} for metallicity progenitors of Z/Z_{\odot} = 2 x 10⁻², 2 x 10⁻³ and 2 x 10⁻⁴ (Spera+ 2015)

MASSIVE STARS, THE PROGENITORS OF BBs ARE FORMED IN MULTIPLE SYSTEMS

- >70% of MW O stars are binaries and the frequency of the mass ratio distribution is flat (Sana+ 2012)
- Theoretical models indicate that ~36% of stars in primordial galaxies are formed in small groups, with a high
 incidence of binaries of several tens of solar masses and (Krumholz,+ 2009; Turk+ 2009; Stacy & Bromm 2014).

The chemical evolution of the universe \Rightarrow a large fraction of binary massive stars in the early universe end as BH-HMXBs and as BBHs Mirabel et al. (2011) for impact of BH-HMXBs in cosmology

FORMATION OF THE BBHs IN GW150914 FROM BINARY MASSIVE STARS

• Two stellar models of GW150914 implicitly assume that both BHs of ~30 M_{\odot} were formed by direct collapse

• Could the BHs in GW150914 be primordial? (Bird+2016; Kashlinsky+2016; Clesse+2016; 2017; Ali-Haimoud & Kamionkowski 2016)

CONCLUSION FROM OBSERVATIONAL STUDIES OF BH-XRBs

- Stars of solar metallicity and >40 M_☉ collapse directly to form BHs by implosion, without energetic SNe and Natal Kicks (e.g. Cygnus X-1) ⇒ BHs may be formed by complet implosion. Does this formation mechanism depends on the BH mass? The mass distribution of BH-BH merger rates from GWs will help answer this question
- From the kinematics of BH-XRBs there is evidence for BH formation by direct collapse, but BH formation with SNe/Natal kicks is uncertain ⇒ This would be qualitatively consistent with a large estimated BBH merger rate that may be inferred from LIGO/VIRGO observations
- The theoretically expected metallicity and redshift dependence for the formation of BH-XRBs has now been confirmed by observations \Rightarrow BHs of ~30 M_{\odot} up to ~100 M_{\odot} would naturally be of stellar origin

New Astronomy Reviews, in press: http://dx.doi.org/10.1016/j.newar.2017.04.002