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• Neutron star - black hole (NSBH) binaries 
are promising sources for detection with 
LIGO 

• In O1, we barely probed the range of 
predicted NSBH merger rates. First 
observations expected in O2 / O3. 

• At design sensitivity, observation rate:  
0.2 - 300 per year1. 

• In NSBH systems, neutron stars are 
deformed by the tidal field                        of 
their companion 

• The induced quadrupole moment  
 
depends on the bulk properties of the NS
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LIGO O1 BNS/NSBH upper limits paper 
ApJL 832, 2 (2016)

[1] Abadie et al (2010)

Motivation: NSBHs
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• During inspiral, the GW phasing is altered 
(weakly) at 5PN order, parametrized by the 
dimensionless tidal deformability 
parameter                                . LIGO can 
(barely) resolve these effects for NSBHs1-3. 

• When BH size is comparable to the NS, its 
tidal field can disrupt the star during late 
inspiral. 

• NS disruption can happen before/after 
reaching ISCO, depending on 
(a) mass ratio 
(b) black hole spin.

3Illustration:  Shibata & Taniguchi (2011)   [1] Maseli et al (2013); [2] Yagi & Yunes (2014); [3] Lackey et al (2012)

Motivation: NSBH merger
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Scope of this work
• We study the the measurability of ⋀NS with aLIGO, considering effects of NS 

distortion during inspiral, and disruption near merger 

• We do so for both, single events and populations of observations of NSBH 
binaries 

Waveform Model
• Aligned-spin waveform model for disruptive NSBH mergers1 

• Calibrated to 134 NR simulations, 21 NS EoS (polytropic) 

• Mass-ratio 2 <= q <= 5; BH spin -0.5 <= χBH,z <= +0.75 

• Reduced order effective-one-body2,3 as the base BBH model.  
Intrinsic parameters { M, q, χBH, ⋀NS }  
 
 

4[1] Lackey et al (2014); [2] Pürrer (2016); [3] Taracchini et al (2014)

h̃NSBH(f, ~✓,⇤NS) = h̃BBH(f, ~✓)A(f, ~✓,⇤NS)e
i��(f,~✓,⇤NS)



Inject tidal signals into zero noise 
and recover with tidal templates. 

Prior: ⋀NS flat in [0, 4000] 

Quantify the measurability of ⋀NS 
using the full width of its recovered 
90% credible intervals (△⋀NS) 90%
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1. How well can we measure ⋀NS from a single event?
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1) Below SNR ~ 30, our measured PDF  
for ⋀NS spans the entire prior range!

2) Only when the BH is small with positive spins, and/or the NS is fairly 
deformable can we constrain ⋀NS to better than ±50% of its true value.

1. How well can we measure ⋀NS from a single event?



• We combine information for populations of 
multiple independent disruptive NSBH 
mergers 

• To fix EOS per population: 

✦ MNS = 1.35 M⊙, χNS = 0 

✦ ⋀NS = {500, 800, 1000, 1500, 2000} 

• Events in the population are generated by 
sampling remaining NSBH parameters: 

✦ Mass-ratio: 2 <= q <= 5, 

✦ BH spin: 0 <= χBH,z <= 1, 

✦ source location: uniform in volume, 

✦ source orientation: uniform on a 2-sphere.
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2. How about multiple realistic observations?



2. Measuring ⋀NS from a realistic population

These results are valid for specific population 
realizations. We marginalize our results over the 
population generation process.
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⋀NS measurements from NSBH populations with 
different NS deformabilities. 

We can distinguish between soft and hard 
EOSs with ~20 disruptive NSBH observations.



2. Measuring ⋀NS from a realistic population

⋀NS measurements from NSBH populations with 
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EOSs with ~20 disruptive NSBH observations.
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With 20-35 observations: ⋀NS measurement will have 
±25% error-bars for ⋀trueNS > 1000 (black circles), and 
±50% error-bars for ⋀trueNS < 1000 (black crosses)

With 10-20 observations: median ⋀NS will be 
within ±10% of ⋀trueNS



2. Measuring ⋀NS from a realistic population

Q: Does most of the tidal information come from all 
low-SNR events together or a few loud ones?

The loudest 10 events with SNR > 20 contribute 
the most, and will be interesting for detailed 
follow-ups.
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With 20-35 observations: ⋀NS measurement will have 
±25% error-bars for ⋀trueNS > 1000 (black circles), and 
±50% error-bars for ⋀trueNS < 1000 (black crosses)



If BH masses are outside the astrophysical mass-gap (~ 2-5 M⊙),  
⋀NS measurement gains accuracy more slowly, requiring 25+% additional 
events to attain the same accuracy.

12

2. Measuring ⋀NS from realistic populations: 
Mass gap vs no-Mass gap



✦ Disruptive NSBH binaries are as good probes as BNS for 
constraining the NS tidal deformability, and distinguishing 
between NS candidate EOSs.

✦ With the first 10-20 events, we may begin to place factor of 
1-2 bounds on ⋀NS. With 30-40 events we can constrain ⋀NS 
to within a few 10s of percent.

✦ The loudest 10 events (SNR > 20) provide most of tidal 
information, with little furnished by other low-SNR events.

✦ Accounting for the reduced size of the disruptive NSBH 
parameter space, we can see up to 30 of such sources a year 
with design aLIGO. Therefore all of the above is possible 
within a few years of aLIGO’s operation.
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Conclusions
⋀NS error bars



• Assess systematic errors in LEA+ waveform 
model by comparing against TEOB-NR hybrids 

• Study accumulation of information on tidal 
deformability in detector noise.  

• Fast PE in noise: leverage LEA+ reduced order 
quadrature (S. Field, MP).
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H. Fong, P. Kumar, MP, V. Raymond, S. Field

Followup study


