# The Search for Gravitational Waves from Binaries with Neutron Stars

Steven Reyes
Syracuse University / LIGO & Virgo
June 2017

THE ASTROPHYSICAL JOURNAL LETTERS, 832:L21 (15pp), 2016 December 1

© 2016. The American Astronomical Society. All rights reserved.

doi:10.3847/2041-8205/832/2/L21



UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN

LIGO SCIENTIFIC COLLABORATION AND VIRGO COLLABORATION (See the end matter for the full list of authors.)

Received 2016 July 27; revised 2016 October 5; accepted 2016 October 8; published 2016 November 23

#### **Detections and Non-Detections**



#### **Estimating Rate Upper Limits**

A rate can be given via:

$$R = \frac{\Lambda}{\langle VT \rangle} \sim \left(\frac{events}{Gpc^3 Yr}\right)$$

Use a Poisson distribution to estimate the probability of detecting a binary merger:

$$p(n,\Lambda) = \frac{1}{n!} \Lambda^n e^{-\Lambda}$$

• For a non-detection, (n=0), we can estimate an upper limit at 90% confidence as:

$$R_{90\%} \sim \frac{2.303}{\langle VT \rangle}$$

## Estimating Rate Upper Limits (Continued...)

- Estimate a sensitive volume, (VT), via Monte-Carlo integration methods.
- Generate software injections of binary waveforms to simulate source populations. Use a FAR threshold of 0.01 yr<sup>-1</sup> to recover injections.

$$\langle VT \rangle = \frac{N_{\text{found}}}{N_{\text{injected}}} \langle VT \rangle_{\text{injected}}$$



Calibration and waveform uncertainty contribute to error on (VT) and on R.

## **BNS Populations Considered**

#### Consider four populations:

 $\circ$  Gaussian in mass (μ : 1.35 M $_{\odot}$ , σ: 0.13 M $_{\odot}$ ) Isotropic Spins

Low Spin:  $\chi_i < 0.05$ 

■ High Spin:  $\chi_i$  < 0.40

- Uniform in mass (1.0, 3.0)  $M_{\odot}$  Isotropic Spins
  - Low Spin:  $\chi_i$  < 0.05
  - High Spin:  $\chi_i$  < 0.40
- Gaussian Mass, Low Spin



#### **NSBH Populations Considered**

#### Consider six populations

$$m_1 = 1.4 M_{\odot}$$
  
 $m_2 = 5 M_{\odot}, 10 M_{\odot}, 30 M_{\odot}$ 

- Isotropic spins  $\chi_1 < 0.04, \chi_2 < 1.0$
- Aligned spins  $\chi_1 < 0.04, \chi_2 < 1.0$
- (1.4 M<sub>☉</sub>, 5 M<sub>☉</sub>), Isotropic Spins
   (1.4 M<sub>☉</sub>, 10 M<sub>☉</sub>), Isotropic Spins



## Astrophysical Implications on GRBs

- Assume that short GRBs are recovered jets from BNS or NSBH mergers.
- $R_{GRB} = 3 30 \text{ Gpc}^{-3} \text{ yr}^{-1}$

$$R_{\rm GRB} = (1 - \cos \theta_i) R_{\rm merger}$$



#### Conclusions

- Estimates on upper limits on rate of BNS/NSBH mergers from **O1** are not enough to rule out predictions from theoretical models.
- Continued non-detections in O2 and O3 may begin to yield upper limits on the rate of BNS/NSBH mergers that begin to conflict with some theoretical models.

#### **Thanks**

#### Extra Slides

#### The Search for Coalescence of Compact Binaries

- The first Observing Run (O1) spanned from September 12th, 2015 to January 19th, 2016.
  - 49.0 days of coincident data accumulated between Hanford and Livingston detectors.
  - A total of 52.0 days of data were analyzed by the online analyses.
  - Between offline analyses, gstLAL analyzed 48.3 days of data, and pyCBC analyzed 46.1 days of data.
- The second Observing Run (O2) began on November 15th, 2016, and is still ongoing.

#### Online Analysis

- gstLAL pipeline:
  - $\circ$   $m_1 \in [1, 16] M_{\odot}$
  - $\circ$   $m_2 \in [1, 2.8] M_{\odot}$
  - $\circ$   $\chi_i < 0.05$  for  $m_i < 2.8$  M $_{\odot}$
  - $\circ$   $\chi_i$  < 1.0 otherwise
- mbta pipeline:
  - $\qquad \qquad \mathsf{m}_{\mathsf{1}}, \, \mathsf{m}_{\mathsf{2}} \in [\mathsf{1}, \, \mathsf{12}] \, \mathsf{M}_{\scriptscriptstyle \odot}$
  - $\circ$  M<sub>chirp</sub> < 5 M $_{\odot}$
  - $\circ$   $\chi_i < 0.05$  for  $m_i < 2 M_{\odot}$
  - $\circ$   $\chi_i$  < 1.0 otherwise



#### Offline Analysis

- gstlAL & pyCBC pipelines:
  - $\circ$   $m_i \in [1, 99] M_{\odot}$
  - $\circ$   $M_{total} < 100 M_{\odot}$
  - $\circ$   $\chi_i$  < 0.05 for  $m_i$  < 2  $M_{\odot}$
  - $\circ$   $\chi_{i}$  < 0.9895 otherwise



## Rate of BNS Mergers (Gaussian Mass Distribution)



# BNS Rates Upper Limits / Inspiral Range

| Injection           | Range of spin | $\langle VT \rangle$ (Gpc <sup>3</sup> yr) |                       | Range (Mpc) |        | $R_{90\%} (\text{Gpc}^{-3} \text{ yr}^{-1})$ |        |
|---------------------|---------------|--------------------------------------------|-----------------------|-------------|--------|----------------------------------------------|--------|
| set                 | magnitudes    | PyCBC                                      | GstLAL                | PyCBC       | GstLAL | PyCBC                                        | GstLAL |
| Isotropic low spin  | [0, 0.05]     | $2.09 \times 10^{-4}$                      | $2.20 \times 10^{-4}$ | 73.2        | 73.4   | 12,100                                       | 11,500 |
| Isotropic high spin | [0, 0.4]      | $2.00 \times 10^{-4}$                      | $2.07 \times 10^{-4}$ | 72.1        | 72.0   | 12,600                                       | 12,200 |

#### Rate of BNS Mergers (Isotropic Mass Distribution)



## Upper Limits on NSBH Merger Rates



# NSBH Rates Upper Limit / Inspiral Range

| NS mass       | BH mass       | Spin         | $\langle VT \rangle$ (Gpc <sup>3</sup> yr) |                       | Range (Mpc) |        | $R_{90\%} (Gpc^{-3} yr^{-1})$ |        |
|---------------|---------------|--------------|--------------------------------------------|-----------------------|-------------|--------|-------------------------------|--------|
| $(M_{\odot})$ | $(M_{\odot})$ | distribution | PyCBC                                      | GstLAL                | PyCBC       | GstLAL | PyCBC                         | GstLAL |
| 1.4           | 5             | Isotropic    | $7.01 \times 10^{-4}$                      | $7.71 \times 10^{-4}$ | 110         | 112    | 3,600                         | 3,270  |
| 1.4           | 5             | Aligned      | $7.87 \times 10^{-4}$                      | $8.96 \times 10^{-4}$ | 114         | 117    | 3,210                         | 2,820  |
| 1.4           | 10            | Isotropic    | $1.00 \times 10^{-3}$                      | $1.01 \times 10^{-3}$ | 123         | 122    | 2,530                         | 2,490  |
| 1.4           | 10            | Aligned      | $1.36 \times 10^{-3}$                      | $1.52 \times 10^{-3}$ | 137         | 140    | 1,850                         | 1,660  |
| 1.4           | 30            | Isotropic    | $1.10 \times 10^{-3}$                      | $9.02 \times 10^{-4}$ | 127         | 118    | 2,300                         | 2,800  |
| 1.4           | 30            | Aligned      | $1.98 \times 10^{-3}$                      | $1.99 \times 10^{-3}$ | 155         | 153    | 1,280                         | 1,270  |