

Probing The Nanohertz GW Landscape With Pulsar Timing Arrays: A Status Report

Stephen R. Taylor

JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY

Overview

- Pulsar timing
- Searching for gravitational waves
- Supermassive black-hole binaries as sources of nanohertz gravitational waves
- Impact of binary environments on GW signals.
- The Solar-system Ephemeris: our new noise floor.

Pulsar timing

Sophisticated timing models depend on P, Pdot, pulsar sky location, ISM properties, pulsar binary parameters etc.

Stephen Taylor GWPAW 2017, Annecy, France, 05-31-2017

Caltech

- Sensitivity band set by total observation time (I/decades) and observational cadence (I/weeks) [~ I- I00 nHz]
- Primary candidate is population of supermassive black-hole binaries

- Sensitivity band set by total observation time (I/decades) and observational cadence (I/weeks) [~ I- I00 nHz]
- Primary candidate is population of supermassive black-hole binaries

- Sensitivity band set by total observation time (I/decades) and observational cadence (I/weeks) [~ I- I00 nHz]
- Primary candidate is population of supermassive black-hole binaries

- Sensitivity band set by total observation time (I/decades) and observational cadence (I/weeks) [~ I- I00 nHz]
- Primary candidate is population of supermassive black-hole binaries

Other sources in the nHz band may be decaying cosmic-string networks, or relic GWs from the early Universe

Other sources in the nHz band may be decaying cosmic-string networks, or relic GWs from the early Universe

Stephen Taylor GWPAW 2017, Annecy, France, 05-31-2017

How do we build a stochastic signal from these binaries, and how do the different physical processes affect the spectrum?

How do we build a stochastic signal from these binaries, and how do the different physical processes affect the spectrum?

$$h_c^2(f) = \int_0^\infty dz \int_0^\infty dM_1 \int_0^1 dq \frac{d^4N}{dz dM_1 dq dt_r} \frac{dt_r}{d\ln f_{K,r}}$$

$$\times h^2(f_{K,r}) \sum_{n=1}^\infty \frac{g[n, e(f_{K,r})]}{(n/2)^2} \delta \left[f - \frac{nf_{K,r}}{(1+z)} \right]$$

e.g. Phinney (2001), Sesana (2013)

How do we build a stochastic signal from these binaries, and how do the different physical processes affect the spectrum?

$$h_c^2(f) = \int_0^\infty dz \int_0^\infty dM_1 \int_0^1 dq \frac{d^4N}{dz dM_1 dq dt_r} \frac{d^4N}{d\ln f_{K,r}}$$

$$\times h^2(f_{K,r}) \sum_{n=1}^\infty \frac{g[n, e(f_{K,r})]}{(n/2)^2} \delta \left[f - \frac{nf_{K,r}}{(1+z)} \right]$$

e.g. Phinney (2001), Sesana (2013)

- (a) Comoving merger rate affects overall signal level
- (b) Binary evolution affects shape of spectrum through time binaries spend emitting at each frequency (binary environmental influences enter here)
- (c) Eccentricity affects shape of spectrum through binary orbital evolution

Upper limits reference the characteristic strain amplitude at a GW frequency of 1/yr (~32 nHz)

Upper limits reference the characteristic strain amplitude at a GW frequency of 1/yr (~32 nHz)

Upper limits reference the characteristic strain amplitude at a GW frequency of 1/yr (~32 nHz)

Lentati, **Taylor** et al. (2015) $\leq 3.0 \times 10^{-15}$

Shannon et al. (2015) $\lesssim 1.0 \times 10^{-15}$

Arzoumanian et al. (2015) [led by Ellis, inc. **Taylor**, Mingarelli, van Haasteren, Vallisneri, Lazio]

 $\lesssim 1.5 \times 10^{-15}$

Burke-Spolaor (2015)

Stephen Taylor GWPAW 2017, Annecy, France, 05-31-2017

"Final parsec problem"

Dynamical friction not a sufficient driving mechanism to induce merger within a Hubble time

e.g., Milosavljevic & Merritt (2003)

"Final parsec problem"

Dynamical friction not a sufficient driving mechanism to induce merger within a Hubble time

e.g., Milosavljevic & Merritt (2003)

Additional environmental couplings may extract energy and angular momentum from binary to drive it to sub-pc separations

Caltech

$$\frac{dt}{d\ln f} = f \left[\sum_{i} \frac{df}{dt} \Big|_{i} \right]$$

Binary evolution will be dominated by environment at low frequencies, and radiation reaction at high frequencies

$$\frac{dt}{d\ln f} = f\left[\sum_{i} \frac{df}{dt}\Big|_{i}\right]$$

$$h_c(f) = A \frac{(f/f_{\rm yr})^{\alpha}}{\left(1 + (f_{\rm bend}/f)^{\kappa}\right)^{1/2}}$$

- Binary evolution will be dominated by environment at low frequencies, and radiation reaction at high frequencies
- Following Sampson & Cornish (2015), NANOGrav [Arzoumanian et al. (2016)] modeled the GW strain spectrum with a low-frequency turnover

$$\frac{dt}{d\ln f} = f\left[\sum_{i} \frac{df}{dt}\Big|_{i}\right]$$

$$h_c(f) = A \frac{(f/f_{\rm yr})^{\alpha}}{\left(1 + (f_{\rm bend}/f)^{\kappa}\right)^{1/2}}$$

Binary evolution will be dominated by environment at low frequencies, and radiation reaction at high frequencies

Following Sampson & Cornish (2015), NANOGrav [Arzoumanian et al. (2016)] modeled the GW strain spectrum with a low-

Latest techniques

Taylor et al., PRL 118, 181102 (2017)

- Build a bank of spectral shapes from **population simulations** (including all physics).
- Train a Gaussian Process to learn the spectral properties.
- Provides a fast physically-trained model.
- Can be trivially expanded.

Build a semi-analytic model to probe losscone scattering.

Also expand merger-rate density with simplified prescription.

Chen et al., arXiv:1612.02826

Preliminary NANOGrav I Jyr Results

Observed GW Frequency, f [Hz]

The Solar System Ephemeris

- All TOAs referenced to the SSB.
- Location of SSB requires the masses and trajectories of all objects in solar-system.
- IPL do not really care about the position of the SSB. They care about navigating probes to planets.
- The ephemeris time-series has not usually been fit for in our PTA analysis. It has been subtracted.

Preliminary NANOGrav I lyr Results

- Bayes factor for a common red process (i.e. leaving out H&D correlations) versus noise range from ~I (DE435) to ~I0 (DE430).
- It is crucial to marginalize over the difference in the ephemeris uncertainties for robust GW statistics.

Preliminary NANOGrav I lyr Results

- Bayes factor for a common red process (i.e. leaving out H&D correlations) versus noise range from ~I (DE435) to ~I0 (DE430).
- It is crucial to marginalize over the difference in the ephemeris uncertainties for robust GW statistics.

NANOGrav 11yr dataset – Roemer mixture model

Summary

- ▶ PTAs are expected to make a GW detection within ~5-10 years.
- The GW strain spectrum encodes information about SMBHB dynamical evolution.
- Constraining the spectral shape can tell us about disc accretion, and loss-scone scattering.
- PTAs are now sensitive to the solar-system ephemeris. A huge milestone for us!