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Motivation & outline
• Multi-messenger observations can be combined to improve our 

knowledge of gravitational wave progenitors 
• We present an approach to do this for joint short-GRB and 

gravitational wave observations from binary neutron stars 
• Though the details discussed here are relevant for sGRB-GW, the 

general approach is applicable to any joint EM-GW observations 

• Methodology 
• Characterisation 

- Simulation 
- Example case study 
- Ensemble results 

• Summary & discussion
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The general idea
• For a joint sGRB-BNS detection, 

we combine the results to 
enhance our inference. 

• A BNS detection allows us to 
constrain d, cosi, + others. 

• An sGRB detection without an 
identified host gives us flux, a 
function of θjet, d, and L, + others. 

• Require θjet > i 
   
   d - distance 
     i - inclination angle 
 θjet - GRB half opening angle 
    L - GRB luminosity

z

yx

sGRB constraints BNS constraints
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The procedure
• From Bayes’ theorem, we can write down the posterior for all 

parameters as 

• The sGRB likelihood is 

• The measured flux is mapped to the sGRB luminosity, L, by 

• Assume peak flux observed by ideal (lossless) sGRB detector

p(S|�,�, I) = 1

�F�

p
2⇡

exp

 
� (F� � Fth)

2

2�2
F�

!

Fth(d, L, ✓jet) =
L

4⇡ d2(1� cos ✓jet)
.

D: gravitational wave data 
S: EM data (sGRB observations) 
𝜸:  parameters common to GW & EM 
ω: parameters for GW only 
Φ: parameters for EM only 
θ: {𝛾, ω, Φ} 
I: additional information

p(✓|S,D, I) / p(�,!,�|I)p(D|�,!, I)p(S|�,�, I)

d: source distance 
θjet: sGRB half-opening angle
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Characterising the method
• We simulated 1000 BNS signals in Advanced LIGO and Advanced 

Virgo noise at design sensitivity 
• Extract posteriors using lalinference.  
• Assume all simulated signals are jointly observed with sGRB 
• Parameters are selected with priors 

- sources are located uniform in volume up to 400 Mpc. 
- jet opening angle uniform θjet between (5,30) degs. 
- cosi uniform between (-1,1) (jet angle must be consistent). 
- sGRB luminosity L drawn from a power law distribution (index -1.4 and cut-

off at 1049 ergs/s. 

• Peak flux is computed from L, d and θjet + noise. 
• Combine posteriors using a KDE approach.  

p(L|I) = 0.4

Lmin

✓
L

Lmin

◆�1.4

.
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Example
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Example
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The results
• We take the 95% credible intervals on distance for GW only cases 

and for joint sGRB-GW cases. 
• Then we take the ratio and 

histogram. 
• Smaller ratios imply a 

reduction in posterior 
width. 

• With and without SNR cuts 
we get median 
improvements of factors of 
~2 and ~1.25.
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The results
• Here we do the same for luminosity except we compare with the 

case of an sGRB with an identified host galaxy where the distance 
is known exactly (no GWs). 

• We find that the median 
of the ratio distribution is 
~2. 

• Hence luminosity 
inference is comparable 
to the ideal non-GW case 
(host with exact distance).
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Discussion
• Using only sGRB and GW observations, we have inferred the sGRB 

luminosity without requiring additional information. 
• The uncertainty in the sGRB luminosity inference with GWs is 

comparable to non-GW cases (host with exact distance). 
• As expected, distance and inclination inference is improved. 
• For Advanced LIGO & Advanced Virgo at design sensitivity, we 

may have 1 sGRB-GW joint observation 
• For A+, we will likely have a few per year 
• ET will detect all BNS up to z~1 

- determine luminosity function (see talk by Chris Messenger) 

• Method is applicable to all joint observations with GWs 
- eg. X-ray, IR,…


