X-ray variability in accreting supermassive black holes and relations to X-ray binaries

Gabriele Ponti & Barbara De Marco

Max-Planck-Institut für Extraterrestrische Physik

MAX-PLANCK-GESELLSCHAF

Typical X-ray spectrum of accreting super-massive black holes (AGN)

What is the geometry of space-time and matter flows around black holes?

Black holes are frustratingly small !!

X-ray binary

Jet

Outer disc ~ $10^5 r_g$

Most of the action within $10^2 r_g$

 $r_{\rm g} = 2 \ G \ M_{BH} / c^2 \sim 50 \ \mu ls \ (M_{BH} / 10 \ M_{Sun})$

10 X-ray source < fAccretion disc

Size of AGN BH_{Horizon}: $r_g = 2 G M_{BH} / c^2$

Pushing resolution of X-ray images to the limit...

[ESA News/XMM-Newton/G. Ponti+'15a]

1 deg ~500 light years

Our state of the art instruments...

Detectors

XMM-Newton

X-ray mirrors

For each photon:
1) Position
2) Energy
3) Time (ms resolution for 1.5 days)

Light curves of AGN

Quantifying variability: Excess variance

$$\sigma^2_{rms} = \frac{1}{N\overline{x}^2} \sum_{i=1}^{N} \left[(x_i - \overline{x})^2 - \sigma_{\text{err},i}^2 \right]$$

 x_i = count rate/flux measurements $\sigma^2_{err,i}$ = errors

→ Equivalent to PSD over $[1/T_{max}, 1/2\Delta t]$ [e.g. Nandra +'97; Vaughan+'03; Ponti+'12; Soldi+'14]

Characterising variability: The power spectrum

Similar engine in AGN and X-ray binaries!

For each photon:

- 1) Position
- 2) Energy
- 3) Time (ms resolution for 1.5 days)

→ Energy dependent variability

Reverberation: Mapping the corona & disc

Flux

Rate

 $\underbrace{\Delta t \rightarrow R}_{\leftarrow}$

Time [Blandford & McKee '82]

corona dominated band disc dominated band

 $\begin{aligned} x(t) \Rightarrow X(v) \\ y(t) \Rightarrow Y(v) \end{aligned}$

10⁵

Cross spectrum = $C_i(v) = X^*(v)Y(v)$

Lag as a function of frequency

phase lag= argument of cross spectrum=arctg Im[C(v)]/Re[C(v)] time lag=phase lag/2πv

First robust detection of reverberation

Offset AGN scaled and X-ray binaries

→ <u>different disc-corona geometry!</u>

Variation of geometry in the hard state

[*De Marco*, *GP*+'15;'16]

Summary

→ Through variability we can grasp geometrical information of accreting black holes

→ A similar (scaled) engine (PSD) powers AGN and X-ray binaries

→ The X-ray source in AGN is compact ($r < 1-2 r_g$) All studied AGN have the same compact disc-corona geometry (1-10 r_g)

→ X-ray binaries in hard state have large disc-corona distances (20-10³ r_g) The disc-corona distance decreases with luminosity (disc more truncated at low L)

