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SMART METERS AND CONNECTED OBJECTS

= Deployment of smart meters (Linky project in France)
o From 2016 to 2020 (35M meters)
o Remote turning power on/off, remote readings and billing
o Readings up to every 10 minutes to the supplier/distributor

o Readings up to 2s on premisses

= Deployment of connected objects in households (‘smart home’)
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NEW SERVICES TO CUSTOMERS

» Using smart meter readings for energy efficiency diagnosis and advice
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NEW SERVICES TO CUSTOMERS

» Using smart meter readings for energy efficiency diagnosis and advice
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NEW SERVICES TO CUSTOMERS

» Using smart meter readings for energy efficiency diagnosis and advice
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NEW SERVICES TO CUSTOMERS

» Using smart meter readings for energy efficiency diagnosis and advice
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NEW SERVICES TO CUSTOMERS

» Using smart meter readings for energy efficiency diagnosis and advice

o One standard approach: comparison to « neighbors »
» Storage of individual consumption curves in a centralized data warehouse
» Construction of (daily/weekly) profiles by clustering of individual curves
» Association of house/equipment/occupants characteristics to clusters
» Comparison of individual data with profiles
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GREAT ... BUT ...

= Consumption data becomes more sensitive at a higher sampling rate
o Presence/absence, number of people in the house
o Human activity (cooking, shower, TV, ...)
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Household electrical consumption example

Newborough et P. Augood, « Demand-side management opportunities for the UK domestic sector »,
Generation, Transmission and Distribution, IEE Proceedings-, vol. 146, n° 3, p. 283 -293, mai 1999.
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PRIVACY-PRESERVING SERVICES TO CUSTOMERS

Do the same job but with privacy preservation of individual electric
power consumption curve !

- « Chiaroscuro »

= Basic idea
o Customer advice is computed locally (can easily be private)
o Construction of profiles with associated household characteristics

- New approach of privacy-preserving clustering of individual consumption curves

‘;:eDF Privacy-preserving use of individual smart metering data for customer services, G.Hébrall, Dec.13, 2016 | 10



PRIVACY-PRESERVING TIME SERIES CLUSTERING

= Privacy-preserving distributed clustering
» P2P infrastructure

= Evaluation
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PRIVACY-PRESERVING DISTRIBUTED CLUSTERING

= Data input
o N geographically distributed individual daily electric power consumption time series
o 24 dimensions vectors if hourly data, 144 dimensions data if 10’ data
o Euclidian distance on (normalized) coordinates

-

o Output result
+ K time-series profiles (24 ou 144 dimensions) F -
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PRIVACY-PRESERVING DISTRIBUTED CLUSTERING

= K-means algorithm (centralized)

iteration
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PRIVACY-PRESERVING DISTRIBUTED CLUSTERING

= K-means parallelization (partition)

iteration
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PRIVACY-PRESERVING DISTRIBUTED CLUSTERING

= K-means: circulation of centroids among individuals

iteration
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Circulation of 2 centroid structures among individual participants

Cleartext centroids for local assignment of individual time series to the closest cluster

Encrypted centroids built gradually from assignments for the next iteration

ROO
o
.

Cleartext centroids Encrypted means @m_ / _

perturbed (differential privacy) (additively-homomorphic)
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Centroid computation within an iteration

Two additive parts: SUM and COUNT
Use of additive homomorphic encryption (allows addition directly on encrypted data)
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End of iteration

Decryption of centroids for the next iteration but:
Introduction of noise in centroids before decryption (differential privacy)

Collaborative decryption
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PRIVACY-PRESERVING DISTRIBUTED CLUSTERING

= Association of house/equipment/occupants characteristics to clusters
o Last iteration
o Counting for each combination characteristic x cluster
o Similar protection: encryption + noise + collaborative decryption
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PRIVACY-PRESERVING TIME-SERIES CLUSTERING

= Privacy-preserving distributed clustering
= P2P infrastructure

= Evaluation
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PRIVACY-PRESERVING TIME-SERIES CLUSTERING

= P2P (peer-to-peer) architecture
o No central server (local operations preserving privacy)
o Scalability to millions of customers
o Robustness to connections / disconnections (churn)

o Sum computations using a « gossiping » algorithm
* repeated averages between participants (adaptation of usual gossip sum algorithm)
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PRIVACY-PRESERVING TIME-SERIES CLUSTERING

= Privacy-preserving distributed clustering
= P2P infrastructure

= Evaluation
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PRIVACY-PRESERVING TIME-SERIES CLUSTERING

= Evaluation questions:

o Quality of clustering:

* Perturbed centralized k-means implementation
* Measured by the intra-cluster inertia

- Datasets : Irish CER (3M real electrical consumption time-
series) and NUMED (1.2M synthetic tumor growth time-
series)

o Latencies of gossip algorithms: distributed computing simulator
(Peersim)

o Local performances (i.e., CPU times, bandwidth consumption):
laptop with current average+ resources
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PRIVACY-PRESERVING TIME-SERIES CLUSTERING

= Quality of clustering

o Varying participants for each iteration (connections/disconnections)

o Introduction of noise
 High perturbation for small clusters
* Large clusters « eat » small clusters

o Distribution of privacy budget between iterations
o Smoothing time series after noise introduction
o Early stopping
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inertia

Quality of clustering: example of settings

Clustering : k = 50 centroids, CER dataset, 24 numbers per time-series

Security : differential privacy budget € = 0.69, encryption key length 1024 bits
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PRIVACY-PRESERVING TIME-SERIES CLUSTERING

= Affordable communication and computation costs
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CONCLUSION

= Chiaroscuro :

o First massively distributed privacy-preserving clustering solution for
time series

o Clustering: k-means-like algorithm (simplicity)
o Distribution: Gossip-based (scalability and fault-tolerance)

o Privacy: encryption and differential privacy

= Future work :
o Functional representation of time series
o Malicious participants

o Other analytical algorithms
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