# Summary of physics results from ATLAS experiment at LAPP and LPSC

#### Elena Yatsenko for the LAPP and LPSC ATLAS groups

Annual Plenary Meeting ENIGMASS, Annecy



#### December 9, 2016





Elena Yatsenko

### The Large Hadron Collider



# LHC performance in Run2

- Run2 of the LHC: 2015 2018
- Center-of-mass energy  $\sqrt{s} = 13$  TeV (p-p)
- Proton bunch spacing 25 ns (compared to 50 ns in Run1)
- The LHC in 2016 processed well beyond expectations!
- $<\mu>$ : mean number of interactions per crossing
- 2015:  $<\mu>pprox$  14
- 2016:  $<\mu>\approx$  24







Elena Yatsenko

### ATLAS in Run2



- Delivered luminosity: 43.1 fb<sup>-1</sup>
- Recorded luminosity: 39.9 fb<sup>-1</sup>
- Luminosity peak  $1.4 \times 10^{34} cm^{-2} s^{-1}$  is above designed LHC value.

#### 2015



#### **2016**



### Object performance

- Strong contribution of the LAPP and LPSC groups to the efficiency measurements of electron and photon identification.
- Presice measurement of the electron energy scale and resolution.



Photon identification efficiencies and scale factors

ATL-PHYS-PUB-2016-014



LAPP. LPSC

### **Standard Model measurements**



### Electroweak sector: $W^{\pm}Z$ production



• Measurement of total, fiducial and differential  $W^{\pm}Z$  production cross-section.

LAPP

# Searches of new physics in $W^{\pm}Z$ production



# Top-quark physics: probing Wtb vertex structure

LPSC

- Single-top final state is sensitive to new contributions (= anomalous coupling) to the Wtb vertex.
- Produced top quark is highly polarized => W boson from t-quark decay also possesses polarization.
- Top-quark and *W* polarization observables can be extracted from asymmetries in angular distributions of final-state leptons.

| Asymmetry                   | Angular observable              | Polarisation observable                                                     | SM prediction |
|-----------------------------|---------------------------------|-----------------------------------------------------------------------------|---------------|
| $A_{FB}^{\ell}$             | $\cos \theta_{\ell}$            | $\frac{1}{2}\alpha_{\ell}P$                                                 | 0.45          |
| $A_{FB}^{tW}$               | $\cos\theta_W\cos\theta_\ell^*$ | $\frac{3}{8}P(F_R+F_L)$                                                     | 0.10          |
| $A_{FB}$                    | $\cos 	heta_{\ell}^{*}$         | $rac{3}{4}\langle S_3 angle=rac{3}{4}\left(F_R-F_L ight)$                 | -0.23         |
| A <sub>EC</sub>             | $\cos 	heta_\ell^*$             | $\frac{3}{8}\sqrt{\frac{3}{2}}\langle T_0 \rangle = \frac{3}{16}(1 - 3F_0)$ | -0.20         |
| $A_{FB}^T$                  | $\cos \theta_{\ell}^{T}$        | $\frac{3}{4}\langle S_1 \rangle$                                            | 0.34          |
| $A_{FB}^N$                  | $\cos \theta_{\ell}^N$          | $-\frac{3}{4}\langle S_2 \rangle$                                           | 0             |
| $A_{FB}^{\mathcal{T},\phi}$ | $\cos\theta^*_\ell\cos\phi^*_T$ | $-\frac{2}{\pi}\langle A_1\rangle$                                          | -0.14         |
| $A_{FB}^{N,\phi}$           | $\cos\theta^*_\ell\cos\phi^*_N$ | $\frac{2}{\pi}\langle A_2 \rangle$                                          | 0             |
|                             |                                 |                                                                             |               |

#### ATLAS-CONF-2016-097





- Through the polarization observables imaginary part of g<sub>R</sub> anomalous coupling can be probed with the best precision.
- *Extraction of limits* on Im  $g_R$  to probe CP-violation:  $\lim g_R \in [-0.17, 0.06]$ => best published limits

## Higgs boson: $H \to \gamma \gamma$

10/24

 Since the discovery of the Higgs boson in 2012, focus has shifted to measuring its properties and testing the consistency of the Standard Model with data.



• First <u>fiducial</u>, <u>differential</u> and total production cross section measurements of Higgs boson production in  $H \rightarrow \gamma \gamma$  at 13 TeV.

#### Diphoton invariant mass spectrum:





Higgs boson: combined  $H \rightarrow \gamma \gamma$  and  $H \rightarrow 4\ell$ 

LAPP, LPSC

#### ATLAS-CONF-2016-081

- Higgs production is seen with local significance  $10\sigma$  (8.6 $\sigma$  expected).
- $\sigma(pp \rightarrow H + X) = 59.0^{+9.7}_{-9.2}$ (stat.) $^{+4.4}_{-3.5}$ (syst.)pb is determined from fiducial measurements of  $H \rightarrow \gamma\gamma$  and  $H \rightarrow 4\ell$ .
- No deviation from Standard Model is found.



# Searches for physics beyond the Standard Model



### Searches for high-mass diphoton resonances

#### LAPP, LPSC

 Resonances decaying to diphotons predicted by several models beyond the Standard Model.

| Analysis | Benchmark model       | Search mass range |
|----------|-----------------------|-------------------|
| Spin-2   | Graviton predicted by | 500 GeV - 5 TeV   |
|          | Randall-Sundrum model |                   |
| Spin-0   | Higgs-like            | 200 GeV - 2.4 TeV |



Elena Yatsenko

### Searches for high-mass diphoton resonances

ATLAS-CONF-2016-059

- Limit setting based on fiducial cross section to minimize model dependence.
- Data consistent with background-only hypothesis over the full mass range.
- Excess around 750 GeV observed in 2015 data is not seen in 2016 data for spin-0 analysis.





### Searches for dilepton resonances

Narrow resonances decaying to ۲ Various models predict dileptons predicted by several  $\frac{\sqrt{2}}{2}$ different kinds of Z'models beyond the Standard bosons. Model. 3804660740 Date: 2016-06-20 19:55:28 UTC  $m_{ee} = 2.38 \,\,{\rm TeV}$ 

Elena Yatsenko

#### Searches for dilepton resonances: results

#### LAPP



- The highest invariant mass event is found at 2.38 TeV in the dielectron channel, and 1.98 TeV in the dimuon channel.
- The observed dilepton invariant mass spectrum is consistent with the Standard Model prediction, within systematic and statistical uncertainties.



### Searches for boosted $t\bar{t}$ resonances

LPSC

 Search of a new heavy particle that decays into tt pairs.



- Exclusion limits are set on the production cross section times branching ratio for hypothetical Z' bosons decaying into tī.
- No significant deviations from the Standard Model predictions.



0.6

0.5

0.4

0.3

0.2

0 1

√s = 13 TeV

0.5

Fraction of events / 100 GeV

#### ATLAS-CONF-2016-014

3 3.5 m<sup>reco</sup> [TeV]

----- m(Z')=1.0 TeV

----- m(Z')=2.0 TeV ----- m(Z')=2.5 TeV

····· m(Z')=3.0 TeV

2.5

ATLAS Simulation Preliminary

1.5

Searches for charged Higgs bosons:  $H^{\pm} \rightarrow tb$ 

ATLAS Preliminary

- 1σ

700 800

20

Observed limit (CLs) ······ Expected limit (CLs)

tanB = 0.5

tanB = 1

tanB = 60

#### ATLAS-CONF-2016-089

- Charged Higgs boson is predicted by many models beyond the Standard Model
- Search for charged Higgs bosons heavier than the top quark and decaying via  $H^+ \rightarrow t\bar{b}$
- Search mass range: 300-1000 GeV

ӡ(pp→tbH<sup>+</sup>)xBR(H<sup>+</sup>→tb) [pb]

10<sup>-1</sup>

300

10 L

 $H^+ \rightarrow tb$ 

400

√s = 13 TeV. 13.2 fb<sup>-1</sup>

500 600

Interpretation within benchmark scenarios of Minimal Supersymmetric extension of the Standard Model





No significant excess above the expected Standard Model background.

Elena Yatsenko

900

### SUSY with two same-sign leptons or three leptons

- Search for SUperSYmmetry (SUSY) in final states containing jets and
  - ${\mbox{\circlem}}$  two leptons with same charge  $\rightarrow$  signature is present in many scenarios of physics beyond the SM.
  - three leptons of any charge combination
- Interpretation of results in the context of several simplified supersymmetric p models featuring R-parity conservation and R-parity violation.



No significant excess above the Standard Model expectation.

Elena Yatsenko

ATLAS-CONF-2016-037

 $\ell/\nu$  $\ell/\nu$ 

 $\ell/\nu$ 

 $\ell/\nu$ 

#### Events with b-jets and a pair of same-charge leptons LPSC

- Search for beyond the Standard Model processes resulting in pairs of isolated high transverse momentum same-sign leptons, missing transverse momentum, and b-jets.
- Rare experimental signature among Standard Model processes, while several beyond the Standard Model processes *predict* enhanced yield of such events.





Elena Yatsenko

#### Events with b-jets and a pair of same-charge leptons LPSC



### Events with a photon and missing transversy energy

- Theories of dark matter or large extra • spatial dimensions predict the production of events with
  - -high transverse momentum photon
  - -large missing transverse momentum
- Low contribution of Standard Model processes provides powerful sensitivity to models of new phenomena.





matter particles

- Graviton production in models of large extra dimensions
- Probing possible couplings of dark matter to photons through an effective operator.







#### Limit on effective mass scale for $\gamma\gamma\chi\chi$ model



#### JHEP 06 (2016) 059

- Good agreement in the signal region: limits set on the visible cross section and on various models.
- The search excludes mediator masses below 710 GeV for  $\chi$  masses below 150 GeV
- The observed data are consistent with the Standard Model expectations.



- Strong contribution of the LPSC and LAPP groups to ATLAS physics.
- Significant contribution to the object performance.
- Involvement in wide range of physics measurements:
  - Standard Model (EW, Higgs, top measurements)
  - Beyond the Standard Model (SUSY, Dark matter, etc)
- Many public results with the Run2 data: https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- ATLAS Beyond the Standard Model Higgs and Exotics Joint Workshop organized by the LPSC members.