

Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

Galaxy clusters and weak lensing studies with LSST

Nicolas Chotard (LAPP) Dominique Boutigny (LAPP) Céline Combet (LPSC) Jean-Stephane Ricol (LPSC) Yves Zolnierowski (LAPP) Sylvie Rosier (LAPP)

ENIGMASS Annual Plenary Meeting

December 9th, 2016, LAPP

LSST is an instrument designed to make high precision images of the whole accessible sky in 4-D (x, y, z, t)

A 10 year time-lapse movie of the southern sky

Time domain science

- Novae Supernovae GRBs
- Source characterization
- Instantaneous discovery

Moving sources

- Asteroids and comets
- Proper motions of stars

Mapping the Milky Way

- Tidal stream
- Galactic structure
- Complementary to GAIA

Dark energy and dark matter

- Gravitational lensing (strong and weak)
- Evolution of large scale galactic structures
- Trace the nature of dark energy

3 keywords : Fast – Wide – Deep

Site – Telescope - Camera

Average seeing: 0.67 arcsec

November 16th

Telescope

- 8.4 m (6.7m effecif)
- Fully corrected (sphericity, coma, astigmatisme)
- A 350 tons mobile structure

Camera

- 3.2 billion pixels @ 0.2 arcsecond / pixel
- 21 rafts
- 9 CCD / raft

- LSST software: the stack
 - Fully modular, efficient and versatile image analysis framework
 - Open source github link
 - Designed to support several instruments:

LSST - SDSS – HSC – CFHT – DES

- LSST database: Qserv
 - SQL database system able to store trillions of objects while keeping a reasonable access time
 - Design optimized for astronomical queries
 - Massively parallel distributed fault tolerant relational database

- Gravitational potential created by the mass in between a galaxy and us will change the light trajectory
- Consistent modification of background galaxies shape
- Statistical analysis of weakly lensed galaxies
- Probe the Universe at different scales & z

Mass measurement of relaxed galaxy clusters

- X-Ray, SZ \rightarrow baryonic mass
- WL \rightarrow total mass
- Representative sample of the Universe $\rightarrow \Omega_{h}^{\prime}/\Omega_{m}^{\prime}$
- CMB $\rightarrow \Omega_{h} \Rightarrow$ and we get Ω_{m}

Precise and robust measurement of Ω_{n}

Our case study: weak lensing

Hypothesis: galaxies are instrinsicly elliptic and randomly oriented \rightarrow null ellipticity in average

Pixels ⇒ seconds moments
$$Q_{ij}$$

 $\epsilon = \frac{Q_{11} - Q_{22} + 2iQ_{12}}{Q_{11} + Q_{22} + 2(Q_{11}Q_{22} - Q_{12}^2)^{1/2}}$

- Measured ellipticity is a function of the intrinsic ellipticity of the galaxy $\epsilon^{(s)}$ and a quantity that characterize the shear g
- In the limit of weak lensing |g| < 1: $\epsilon^{(s)} = \frac{\epsilon g}{1 g^* \epsilon}$
- If we suppose that the intrinsic orientation is random: $\langle \epsilon \rangle = g$
- Not exactly true: intrinsic alignment of galaxies \rightarrow systematic effect

- The goal is to develop a complete pipeline for cluster analysis in the LSST stack framework
- Current input data are CFHT images in the 5 ugriz filters
- Three clusters under reprocessing and being analyzed

MACSJ2243.3-0935 (z=0.447) CL0016+16 (z=0.541) 3C295 (z=0.464)

Color coding :R = I; G = r; B = g

u(5), g(6), r(9), i(12), z(10)

Clusters python package: A step by step analysis

• **Data format**: easier way to access the LSST data:

LSST stack format \rightarrow Astropy tables in hdf5 files

- **Data validation**: quality assessment of the data processing (color locus, ellipticity, etc)
- **Extinction**: correct for the MW extinction try several available dust maps check related systematic uncertainties
- **Photometric redshift**: wrapper to several photometric redshift estimator codes
- **Galaxy selection**: red sequence + redshif cuts + quality cuts
- Averaged tangential and cross **shear** as a function of redshift
- Mass estimate

 Template fitting methods (redshift, spectral type, and extinction) + prior on z given a magnitude

$$\chi^{2}(z,T,E(B-V),N) = \sum_{i=1}^{N_{bandes}} \left(\frac{F_{i}^{obs}(m_{i}) - NF_{i}^{mod}(z,T,E(B-V))}{\sigma\left(F_{i}^{obs}(m_{i},\sigma(m_{i}))\right)} \right)^{2} \qquad p(z \mid m_{0}) = \sum_{T} p(T \mid m_{0})p(z \mid T, m_{0})$$

- Photometric redshift needed to select lensed galaxies in the background of the cluster
- A wrapper to several photometric redshift estimators included in the Clusters pipeline (BPZ, Lephare)
- Currently testing different codes and configurations

Mass

- Code to estimate the mass has been implement very recently

 → Currently testing it
- But we can still produce different maps related to the mass
- Here, the map showing the lensing potential integrated along the line of sight
- The cluster is located at the cross position, where the potential is the strongest

- Reprocessing : Automatize, debug, quality assessment, new clusters
- Qserv: Test it on real data and implement its use in the analysis
- Analysis
 - Clean and robustify the <u>Clusters</u> pipeline
 - Reproduce known results on known clusters
 - Study all known and potential systematics
 - Extinction try different maps and propagate
 - Photo-z use of different templates, codes, methods
 - Galaxy selections red sequence, redshift and other cuts
 - Go beyond mass estimate cosmology
- Work done in the official DESC clusters working group
- First complete analysis done on real data using the full LSST stack