Cosmological constraints on decaying Dark Matter

Vivian Poulin LAPTh and RWTH Aachen University

In collaboration with Julien Lesgourgues (RWTH, Aachen) and Pasquale D. Serpico (LAPTh, Annecy)

VP & Serpico PRL 114 (2015) no.9, 091101 VP & Serpico PRD 91 103007 (2015) no.10 VP, Serpico & Lesgourgues JCAP 1512 (2015) no.12 041 VP, Serpico & Lesgourgues ArXiv:1610.10051

THAME

Enigmass Meeting 09/12/2016

1

ΛCDM is a big success !

Introduction

Enigmass Meeting, 09/12/16

Most of the universe composition is unknown !

- Dark Energy Dark Matter
- Baryonic Matter

Dark Matter : Stable, Only gravitational interaction

Planck 2016 [arXiv:1605.02985]

Most of the universe composition is unknown !

Dark Energy Dark Matter

Baryonic Matter

Dark Matter : Stable, Only gravitational interaction

Planck 2016 [arXiv:1605.02985]

What happens if one tries to this picture ? e.g adding electromagnetic decaying particles

Most of the universe composition is unknown !

Dark Energy Dark Matter

Baryonic Matter

Dark Matter : Stable, Only gravitational interaction

Planck 2016 [arXiv:1605.02985]

What happens if one tries to this picture ? e.g adding electromagnetic decaying particles

One could spoil (or improve !?) each of these observables !!

 $\overline{\chi}$ $e^-, \mu^-, \tau^-, W^-, b...$ $e^+, \mu^+, \tau^+, W^+, \bar{b}...$??

What happens to the decay products ?

$$
\chi \longrightarrow e^+, \mu^+, \tau^+, W^+, \bar{b}...
$$

What happens to the decay products ?

We restrict ourself to lifetime > 1000 s. One Caveat : *e.g. Jedamzik* => We can neglect hadronic products!

PRD D74 (2006) 103509

Only BBN constraints (for very short lifetime) are sensitive.

$$
\chi \longrightarrow e^+, \mu^+, \tau^+, W^+, \bar{b}...
$$

What happens to the decay products ?

We restrict ourself to lifetime > 1000 s. One Caveat : *e.g. Jedamzik* => We can neglect hadronic products!

Only BBN constraints (for very short lifetime) are sensitive.

 e^{\pm} and γ interact with the plasma = baryons (AKA intergalactic medium) + CMB.

$$
\chi \longrightarrow e^+, \mu^+, \tau^+, W^+, \bar{b}...
$$

What happens to the decay products ?

We restrict ourself to lifetime > 1000 s. One Caveat : *e.g. Jedamzik* => We can neglect hadronic products!

PRD D74 (2006) 103509

Only BBN constraints (for very short lifetime) are sensitive.

 e^{\pm} and γ interact with the plasma = baryons (AKA intergalactic medium) + CMB.

*^e*CMB ! *^e* CMB ! CMB ! *^e*⁺*e* • They lose their energy through interaction with CMB

spectral distortions

$$
\chi \longrightarrow e^+, \mu^+, \tau^+, W^+, \bar{b}...
$$

What happens to the decay products ?

One Caveat: We restrict ourself to lifetime > 1000 s. => We can neglect hadronic products!

e.g. Jedamzik PRD D74 (2006) 103509

Only BBN constraints (for very short lifetime) are sensitive.

 e^{\pm} and γ interact with the plasma = baryons (AKA intergalactic medium) + CMB.

Recombination in a nutshell

$$
H^{+} + e^{-} \leftrightarrow H(1s) + \gamma(E > 13.6 \text{ eV})
$$

leads to the « saha » equation at equilibrium

Recombination in a nutshell

$$
H^{+} + e^{-} \leftrightarrow H(1s) + \gamma(E > 13.6 \text{ eV})
$$

leads to the « saha » equation at equilibrium

$$
\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)}[R_s(z) - I_s(z)]
$$

$$
\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) \right]
$$

$$
\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)}[R_s(z) - I_s(z) - I_X(z)]
$$

$$
\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) + K_h \right]
$$

$$
\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)}[R_s(z) - I_s(z) - I_X(z)]
$$

$$
\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) + K_h \right]
$$

$$
x^{r+e} \cdots \uparrow \cdots \uparrow \cdots
$$

$$
I_X(z) = I_{X_i}(z) + I_{X_{\alpha}}(z)
$$

$$
I_{X_i}(z) = \frac{1}{n_H(z)E_i} \frac{dE}{dV dt} \Big|_{\text{dep,i}} I_{X_i}(z) = \frac{(1-C)}{n_H(z)E_{\alpha}} \frac{dE}{dV dt} \Big|_{\text{dep},\alpha}
$$

$$
K_h(z) = -\frac{2}{H(z)3k_b n_H(z)(1+f_{He}+x_e)} \frac{dE}{dV dt} \Big|_{\text{dep,h}}
$$

$$
\left. \frac{dE}{dVdt} \right|_{\text{inj}} (z) = (1+z)^3 f_{\text{dcdm}} \rho_{\text{dm}} c^2 \times \Delta_{\text{em}} \times \frac{e^{-t/\tau}}{\tau}
$$

$$
\left. \frac{dE}{dVdt} \right|_{\text{inj}} (z) = (1+z)^3 f_{\text{dcdm}} \rho_{\text{dm}} c^2 \times \Delta_{\text{em}} \times \frac{e^{-t/\tau}}{\tau}
$$

number density of decaying particles

$$
\left. \frac{dE}{dVdt} \right|_{\text{inj}} (z) = (1+z)^3 f_{\text{dcdm}} \rho_{\text{dm}} c^2 \times \Delta_{\text{em}} \times \frac{e^{-t/\tau}}{\tau}
$$

number density of decaying particles ⇥ e.m. energy released per decay

$$
\left. \frac{dE}{dV dt} \right|_{\text{inj}} (z) = (1+z)^3 f_{\text{dcdm}} \rho_{\text{dm}} c^2 \times \Delta_{\text{em}} \times \frac{e^{-t/\tau}}{\tau}
$$
\nnumber density

\n \times e.m. energy

\nof decaying particles

\nreleased per decay

\nprobability

$$
\left. \frac{dE}{dV dt} \right|_{\text{inj}} (z) = (1+z)^3 f_{\text{dcdm}} \rho_{\text{dm}} c^2 \times \Delta_{\text{em}} \times \frac{e^{-t/\tau}}{\tau}
$$
\n
$$
\text{number density} \qquad \times \qquad \text{e.m. energy} \qquad \times \qquad \text{decay}
$$
\n
$$
\text{of decaying particles} \qquad \times \qquad \text{released per decay} \qquad \times \qquad \text{probability}
$$

Typical parametrization through the $f_c(z, x_e)$ functions :

see e.g. Slatyer et al. [arXiv:arXiv:0906.1197]

$$
\left. \frac{dE}{dV} \right|_{\text{dep,c}}(z) = f_c(z, x_e) \frac{dE}{dV} \Big|_{\text{inj}}(z)
$$

$$
\left. \frac{dE}{dV dt} \right|_{\text{inj}} (z) = (1+z)^3 f_{\text{dcdm}} \rho_{\text{dm}} c^2 \times \Delta_{\text{em}} \times \frac{e^{-t/\tau}}{\tau}
$$
\nnumber density
of decaying particles
Typical parametrization through the $f_c(z, x_e)$ functions :

see e.g. Slatyer et al. [arXiv:arXiv:0906.1197]

$$
\left. \frac{dE}{dVdt} \right|_{\text{dep,c}}(z) = f_c(z, x_e) \frac{dE}{dVdt} \Big|_{\text{inj}}(z)
$$

 $f_c(z, x_e)$ is the key quantity, it encodes:

- What fraction of the injected energy is left to interact with the IGM
- How this is energy is distribution among each channel :'heat', 'ionization', 'excitation'
$$
\frac{dE}{dVdt}\Big|_{\text{inj}}(z) = (1+z)^3 f_{\text{dcdm}} \rho_{\text{dm}} c^2 \times \Delta_{\text{em}} \times \frac{e^{-t/\tau}}{\tau}
$$
\nnumber density\nof decaying particles\nof decaying particles\nreleased per decay\nreleased per decay\nprobability\n
$$
\frac{dE}{dVdt} = \frac{1}{\tau}
$$
\n
$$
\frac{dE}{dVdt} \Big|_{\text{inj}}(z) = (1+z)^3 f_{\text{dcdm}} \rho_{\text{dm}} c^2 \times \Delta_{\text{em}} \times \frac{e^{-t/\tau}}{\tau}
$$

 τ) high parametrization through the $f_c(z,\tau_e)$ functions :

see e.g. Slatyer et al. [arXiv:arXiv:0906.1197]

$$
\left. \frac{dE}{dVdt} \right|_{\text{dep,c}}(z) = f_c(z, x_e) \frac{dE}{dVdt} \Big|_{\text{inj}}(z)
$$

 $f_c(z, x_e)$ is the key quantity, it encodes:

- What fraction of the injected energy is left to interact with the IGM
- How this is energy is distribution among each channel :'heat', 'ionization', 'excitation'

In practice, it depends on details of the particle physics and injection history.

The free electron fraction carries information on the time / amount of energy injection !

 $\Delta f_{\rm eff} = 1$, $z_{\rm reio} = 8.24$

Many lifetime dependent effects on the CMB power spectra !

- Long lifetime : looks like reionization.
- Short lifetime: can have very peculiar behavior!
	- => CMB anisotropy studies have a handle on the time / amount of energy injection.

CMB anisotropies very powerful at constraining $\tau = [10^{12}, 10^{26}]$ s

The light element abundances

BBN happened few min after BB

The light element abundances

BBN happened few min after BB

The light element abundances

BBN happened few min after BB

BBN very powerful at constraining $\tau = [10^4, 10^{12}]$ s

μ and y spectral distortions

see e.g. Chluba & Sunyaev [arXiv:1109.6552]

Following injection of photons/electrons, scattering processes should thermalize the distribution.

$$
\Delta I(\nu) = I_{\text{true}}(\nu) - I_{\text{bb}}(\nu)
$$

If those processes go out of equilibrium, in full generality:

Most important spectral distortions: μ and y.

μ and y spectral distortions

Following injection of photons/electrons, scattering processes should thermalize the distribution.

If those processes go out of equilibrium, in full generality:

see e.g. Chluba & Sunyaev

[arXiv:1109.6552]

$$
\Delta I(\nu) = I_{\text{true}}(\nu) - I_{\text{bb}}(\nu)
$$

Most important spectral distortions: μ and y.

 μ = creation of a chemical potential

y = compton heating (or cooling!) of the CMB gas

Intermediate distortions probe the time dependance of the energy injection history

credit: Jens Chluba, « Ecole de Gif », 2014

CMB vs BBN vs spectral distortions

Cosmology can constrain a very broad range of lifetime !!

21 cm

- Hyperfine transition from neutral hydrogen
- Very sensitive probes of the Epoch of Reionization (EoR)
- Key quantities : Spin temperature and differential brightness temperature

- Hyperfine transition from neutral hydrogen
- Very sensitive probes of the Epoch of Reionization (EoR)
- Key quantities : Spin temperature and differential brightness temperature

21 cm

scattering with CMB collision within the gas interaction with UV from stars

- Hyperfine transition from neutral hydrogen
- Very sensitive probes of the Epoch of Reionization (EoR)
- Key quantities : Spin temperature and differential brightness temperature

$$
\frac{n_1}{n_0} = 3e^{-E_{10}/k_B T_S}
$$
\n
$$
T_S^{-1} = \frac{T_{\text{CMB}}^{-1} + x_c T_K^{-1} + x_{\alpha} T_c^{-1}}{1 + x_c + x_{\alpha}}
$$

scattering with CMB collision within the gas interaction with UV from stars

Compare patch of the sky with/without hydrogen clouds:

$$
\delta T_b(\nu) = \frac{T_s - T_{\text{CMB}}}{1 + z} \left(1 - \exp(-\tau_{\nu 21}) \right)
$$

see e.g. Furlanetto et al. [[astro-ph/0608032\]](http://arxiv.org/abs/astro-ph/0608032)

Vivian Poulin - LAPTh/RWTH Cosmological constraints on DM decays

- Hyperfine transition from neutral hydrogen
- Very sensitive probes of the Epoch of Reionization (EoR)
- Key quantities : Spin temperature and differential brightness temperature

$$
\frac{n_1}{n_0} = 3e^{-E_{10}/k_B T_S}
$$
\n
$$
T_S^{-1} = \frac{T_{\text{CMB}}^{-1} + x_c T_K^{-1} + x_{\alpha} T_c^{-1}}{1 + x_c + x_{\alpha}}
$$

scattering with CMB collision within the gas interaction with UV from stars

Compare patch of the sky with/without hydrogen clouds:

$$
\delta T_b(\nu) = \frac{T_s - T_{\text{CMB}}}{1 + z} \left(1 - \exp(-\tau_{\nu 21}) \right)
$$

see e.g. Furlanetto et al. [[astro-ph/0608032\]](http://arxiv.org/abs/astro-ph/0608032)

Difficulty = Huge astrophysical uncertainty, one trick : SKA will be able to measure δT_b = 5-10 mK up to z= 20/25 (v = 60 MHz)

Vivian Poulin - LAPTh/RWTH Cosmological constraints on DM decays

We neglect stars : valid until $z \approx 15$, still in the SKA range !

Potential « smoking gun » signal from DM e.m. decay at the end (and during !) the dark ages

Vivian Poulin - LAPTh/RWTH Cosmological constraints on DM decays

SKA could be better at detecting - or constraining - e.m. decay

Exotic particle decays (including DM) can be strongly constrained by Cosmology.

- Bounds are competitive with diffuse gamma-ray background ones.
- Combination of BBN /spectral distortions / CMB allow constraining more than 20 orders of magnitude in lifetime, and 10 orders of magnitude in abundances.
- can also constrain non-electromagnetic decay! \bigcirc

Exotic particle decays (including DM) can be strongly constrained by Cosmology.

- Bounds are competitive with diffuse gamma-ray background ones.
- Combination of BBN /spectral distortions / CMB allow constraining more than 20 orders of magnitude in lifetime, and 10 orders of magnitude in abundances.
- can also constrain non-electromagnetic decay!

Next Step : 21 cm and reionization ! Many experiments are launched $(e.g. SKA, HERA).$

First result quite pessimistic given the huge astrophysical uncertainties.

Some hope : the dark ages, when no stars were there.

Exotic particle decays (including DM) can be strongly constrained by Cosmology.

- Bounds are competitive with diffuse gamma-ray background ones.
- Combination of BBN /spectral distortions / CMB allow constraining more than 20 orders of magnitude in lifetime, and 10 orders of magnitude in abundances.
- can also constrain non-electromagnetic decay!

Next Step : 21 cm and reionization ! Many experiments are launched $(e.g. SKA, HERA).$

- First result quite pessimistic given the huge astrophysical uncertainties.
- Some hope : the dark ages, when no stars were there.

1. CMB Physics

The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

 $T = 2.72548$ +/- 0.00057 K

Fluctuations $\mathcal{O}(10^{-5})$!

Bad Honnef, 31/08/2016

1. CMB Physics

The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

 $T = 2.72548 + (-0.00057)$ K

Fluctuations $\mathcal{O}(10^{-5})$!

In every point on the sky :

 $\frac{T(\theta,\phi)-\bar{T}}{2}$ $\frac{\varphi}{\bar{T}}$ = δT $\frac{\partial^2}{\partial \overline{T}}(\theta, \phi) \equiv \Theta(\vec{n})$

The CMB temperature fluctuations are random !

The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

 $T = 2.72548 + (-0.00057)$ K

Fluctuations $\mathcal{O}(10^{-5})$!

In every point on the sky :

 $\frac{T(\theta,\phi)-\bar{T}}{2}$ $\frac{\varphi}{\bar{T}}$ = δT $\frac{\partial^2}{\partial \overline{T}}(\theta, \phi) \equiv \Theta(\vec{n})$

The CMB temperature fluctuations are random !

Our theory does not predict temperature fluctuations, only statistical properties. => We need moments of the distribution ! the so called « n-points correlation functions »

1. CMB Physics

The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

 $T = 2.72548 + (-0.00057)$ K

Fluctuations $\mathcal{O}(10^{-5})$!

In every point on the sky :

 $\frac{T(\theta,\phi)-\bar{T}}{2}$ $\frac{\varphi}{\bar{T}}$ = δT $\frac{\partial^2}{\partial \overline{T}}(\theta, \phi) \equiv \Theta(\vec{n})$

The CMB temperature fluctuations are random !

Our theory does not predict temperature fluctuations, only statistical properties. => We need moments of the distribution ! the so called « n-points correlation functions »

 $\texttt{Paradigm} : \Theta(\vec{n}) \text{ follows a Gaussian distribution.}$ Linear perturbation theory ensures that this will always be the case.

1. CMB Physics

The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

 $T = 2.72548 + (-0.00057)$ K

Fluctuations $\mathcal{O}(10^{-5})$!

In every point on the sky :

 $\frac{T(\theta,\phi)-\bar{T}}{2}$ $\frac{\varphi}{\bar{T}}$ = δT $\frac{\partial^2}{\partial \overline{T}}(\theta, \phi) \equiv \Theta(\vec{n})$

The CMB temperature fluctuations are random !

Our theory does not predict temperature fluctuations, only statistical properties. => We need moments of the distribution ! the so called « n-points correlation functions »

 $\texttt{Paradigm} : \Theta(\vec{n}) \text{ follows a Gaussian distribution.}$ Linear perturbation theory ensures that this will always be the case.

Only 2 moments of interest :

 $|\vec{n}\rangle\rangle = 0$ $\langle \Theta(\vec{n_1})\Theta(\vec{n_2})\rangle \neq 0$

Vivian Poulin - RWTH Constraining DM properties with the CMB

1. CMB Physics

Bad Honnef, 31/08/2016

Power spectra = Harmonic Transform of the 2-points correlation functions

$$
\Theta(\vec{n}) \equiv \frac{\delta T}{T}(\theta, \phi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta, \phi)
$$

$$
\langle \Theta(\vec{n_1}) \Theta(\vec{n_2}) \rangle = \sum_{\ell,m,\ell',m'} \langle a_{\ell m} a_{\ell' m'}^* \rangle Y_{\ell m}(\vec{n_1}) Y_{\ell' m'}^*(\vec{n_2})
$$

$$
\langle a_{\ell m} \rangle = 0 \qquad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}
$$

$$
\Theta(\vec{n}) \equiv \frac{\delta T}{T}(\theta, \phi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta, \phi)
$$

$$
\langle \Theta(\vec{n_1}) \Theta(\vec{n_2}) \rangle = \sum_{\ell,m,\ell',m'} \langle a_{\ell m} a_{\ell' m'}^* \rangle Y_{\ell m}(\vec{n_1}) Y_{\ell' m'}^*(\vec{n_2})
$$

$$
\langle a_{\ell m} \rangle = 0 \qquad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}
$$

It represents the variance of the distribution for a given scale $\,\ell=\pi/\theta\,$ (in real space, you can relate it to the amplitude of fluctuations in a given box size)

$$
\Theta(\vec{n}) \equiv \frac{\delta T}{T}(\theta, \phi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta, \phi)
$$

$$
\langle \Theta(\vec{n_1}) \Theta(\vec{n_2}) \rangle = \sum_{\ell,m,\ell',m'} \langle a_{\ell m} a_{\ell' m'}^* \rangle Y_{\ell m}(\vec{n_1}) Y_{\ell' m'}^*(\vec{n_2})
$$

$$
\langle a_{\ell m} \rangle = 0 \qquad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}
$$

It represents the variance of the distribution for a given scale $\,\ell=\pi/\theta\,$ (in real space, you can relate it to the amplitude of fluctuations in a given box size)

We can determine this power spectra both experimentally and theoretically ! 6 free parameters to fit: $\{\omega_b, \ \omega_{cdm}, \ h, \ A_s, \ n_s, z_{reio}\}$

$$
\Theta(\vec{n}) \equiv \frac{\delta T}{T}(\theta, \phi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta, \phi)
$$

$$
\langle \Theta(\vec{n_1}) \Theta(\vec{n_2}) \rangle = \sum_{\ell,m,\ell',m'} \langle a_{\ell m} a_{\ell' m'}^* \rangle Y_{\ell m}(\vec{n_1}) Y_{\ell' m'}^*(\vec{n_2})
$$

$$
\langle a_{\ell m} \rangle = 0 \qquad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}
$$

It represents the variance of the distribution for a given scale $\,\ell=\pi/\theta\,$ (in real space, you can relate it to the amplitude of fluctuations in a given box size)

We can determine this power spectra both experimentally and theoretically ! 6 free parameters to fit: $\{\omega_b, \ \omega_{cdm}, \ h, \ A_s, \ n_s, z_{reio}\}$

> DM interacts only gravitationally in the standard Cosmology => Constraints can be derived

Vivian Poulin - RWTH Constraining DM properties with the CMB

1. CMB Physics

μ and y spectral distortions

see e.g. Chluba & Sunyaev [arXiv:1109.6552]

Scattering processes should thermalize the injected photons, but if those processes go out of equilibrium

In full generality: $\Delta I(\nu) = I_{\text{true}}(\nu) - I_{\text{bb}}(\nu)$ µ and y are (almost) eigenmodes in the PCA!

$$
\Delta I(\nu) = I(\nu) - I(\nu)
$$

μ and y spectral distortions

see e.g. Chluba & Sunyaev [arXiv:1109.6552]

Scattering processes should thermalize the injected photons, but if those processes go out of equilibrium

 $\mu \equiv 1.401 \left[\frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right]$

 ρ_γ

 $\overline{\mathcal{L}}$

µ

In full generality:
$$
\Delta I(\nu) = I_{\text{true}}(\nu) - I_{\text{bb}}(\nu)
$$
 μ and y are (almost) eigenmodes in the PCA!

 $J_{\rm bb}J_\mu$

1

 $\int dE$

dt

 $\overline{\mathbf{I}}$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ \vert_{γ} ◆

 ρ_γ

$$
dt, \quad y \equiv \frac{1}{4} \left[\frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right]_{y} \simeq \frac{1}{4} \int \mathcal{J}_{\text{bb}} \mathcal{J}_{y} \frac{1}{\rho_{\gamma}} \left(\frac{dE}{dt} \Big|_{\gamma} \right) dt
$$

compton heating (or cooling!) of the CMB gas

creation of a chemical potential (more/less photons than a BB)

 $\simeq 1.4$

Z

μ and y spectral distortions

see e.g. Chluba & Sunyaev [arXiv:1109.6552]

Scattering processes should thermalize the injected photons, but if those processes go out of equilibrium

In full generality: $\Delta I(\nu) = I_{true}(\nu) - I_{bb}(\nu)$ µ and y are (almost) eigenmodes in the PCA!

$$
\mu \equiv 1.401 \left[\frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right]_{\mu} \simeq 1.4 \int \mathcal{J}_{\text{bb}} \mathcal{J}_{\mu} \frac{1}{\rho_{\gamma}} \left(\frac{dE}{dt} \bigg|_{\gamma} \right) dt,
$$

creation of a chemical potential (more/less photons than a BB)

$$
dt, \quad y \equiv \frac{1}{4} \left[\frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right]_{y} \simeq \frac{1}{4} \int \mathcal{J}_{\text{bb}} \mathcal{J}_{y} \frac{1}{\rho_{\gamma}} \left(\frac{dE}{dt} \Big|_{\gamma} \right) dt
$$

compton heating (or cooling!) of the CMB gas

$$
\mathcal{J}_{\text{bb}}(z) \approx \exp[-(z/z_\mu)^{5/2}], \quad \mathcal{J}_y(z) \approx \left[1 + \left(\frac{1+z}{6 \times 10^4}\right)^{2.58}\right]^{-1}, \quad \mathcal{J}_\mu(z) \approx 1 - \mathcal{J}_y \,.
$$

Visibility functions related to the range of efficiency of typical processes:

- Compton scattering for Comptonization-y
- Double Compton and Bremsstrahlung for μ-distortion

Electromagnetic Cascade in a nutshell

We want to describe electromagnetic energy injection in a plasma of photons (very few e+e-, nuclei) :

what is the resulting metastable distribution of photons ?

Basic processes are (at high energies)

Particle multiplication and energy redistribution => Electromagnetic cascade !

Electromagnetic Cascade in a nutshell

We want to describe electromagnetic energy injection in a plasma of photons (very few e+e-, nuclei) :

what is the resulting metastable distribution of photons ?

Basic processes are (at high energies)

Particle multiplication and energy redistribution => Electromagnetic cascade !

The first process has a threshold, below it

 $\gamma \gamma_{\rm th} \rightarrow \gamma \gamma$

and eventually (very low rates)

$$
\gamma N \to e N
$$

BBN Constraints

Shape independent of the energy / temperature of the bath: Only dictates the overall normalisation;

Threshold due to pair production.

Constraints on evaporating PBH

Constraints on sterile neutrinos

Vivian Poulin - LAPTh/RWTH Cosmological constraints on DM decays