### Cosmological constraints on decaying Dark Matter

### Vivian Poulin LAPTh and RWTH Aachen University

In collaboration with Julien Lesgourgues (RWTH, Aachen) and Pasquale D. Serpico (LAPTh, Annecy)

VP & Serpico PRL 114 (2015) no.9, 091101 VP & Serpico PRD 91 103007 (2015) no.10 VP, Serpico & Lesgourgues JCAP 1512 (2015) no.12 041 VP, Serpico & Lesgourgues ArXiv:1610.10051

**RNTHAACHEN UNIVERSITY** 

Enigmass Meeting 09/12/2016

### ACDM is a big success !



10 -2

0.26

VMAP

 $\Omega_{\rm B}h^2$ 

#### ACDM is a big success !





#### Most of the universe composition is unknown!

Dark Energy
Dark Matter
Baryonic Matter



Dark Matter : Stable, Only gravitational interaction

*Planck* 2016 [arXiv:1605.02985]

#### Most of the universe composition is unknown!

Dark EnergyDark Matter

Baryonic Matter



Dark Matter : Stable, Only gravitational interaction

Planck 2016 [arXiv:1605.02985]

What happens if one tries to this picture ? e.g adding electromagnetic decaying particles

#### Most of the universe composition is unknown!

Dark Energy Dark Matter

Baryonic Matter



Dark Matter : Stable, Only gravitational interaction

Planck 2016 [arXiv:1605.02985]

What happens if one tries to this picture ? e.g adding electromagnetic decaying particles

One could spoil (or improve !?) each of these observables !!





| A Journey in Wonderland of particle physics                                                                                                                                        |                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| see e.g.<br>[hep-ph/0404175],<br>[arXiv:0810.0713],<br>[arXiv:0912.5297],<br>[arXiv:1602.04816]                                                                                    | erned by these constraints ?                                                                                                                               |
| Models                                                                                                                                                                             | Observables                                                                                                                                                |
| <ul> <li>SUSY / UED inspired : excited stated,<br/>unstable -inos e.g. gravitinos, superWIMP,<br/>WIMPzillas</li> <li>Sterile neutrinos</li> <li>Primordial Black Holes</li> </ul> | <ul> <li>Big Bang Nucleosynthesis</li> <li>Spectral Distortions of the BB distribution</li> <li>CMB power spectra</li> <li>Matter power spectra</li> </ul> |

| see e.g.<br>[hep-ph/0404175],<br>[arXiv:0810.0713],<br>[arXiv:0912.5297],<br>[arXiv:1602.04816]                                                                                    |                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                    |                                                                                                                                                            |
| <ul> <li>SUSY / UED inspired : excited stated,<br/>unstable -inos e.g. gravitinos, superWIMP,<br/>WIMPzillas</li> <li>Sterile neutrinos</li> <li>Primordial Black Holes</li> </ul> | <ul> <li>Big Bang Nucleosynthesis</li> <li>Spectral Distortions of the BB distribution</li> <li>CMB power spectra</li> <li>Matter power spectra</li> </ul> |
| Electromagnetic decay products                                                                                                                                                     |                                                                                                                                                            |
| Vivian Poulin - LAPTh/RWTH Cosmological cons                                                                                                                                       | straints on DM decays 4                                                                                                                                    |

| A Journey in Wonderland of particle physics                                                                                                                                        |                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| see e.g.<br>[hep-ph/0404175],<br>[arXiv:0810.0713],<br>[arXiv:0912.5297],<br>[arXiv:1602.04816]                                                                                    | erned by these constraints ?                                                                                                                               |
| Models                                                                                                                                                                             | Observables                                                                                                                                                |
| <ul> <li>SUSY / UED inspired : excited stated,<br/>unstable -inos e.g. gravitinos, superWIMP,<br/>WIMPzillas</li> <li>Sterile neutrinos</li> <li>Primordial Black Holes</li> </ul> | <ul> <li>Big Bang Nucleosynthesis</li> <li>Spectral Distortions of the BB distribution</li> <li>CMB power spectra</li> <li>Matter power spectra</li> </ul> |
| Electromagnetic decay products                                                                                                                                                     | Purely gravitational impact of the decay                                                                                                                   |

 $e^+, \mu^+, \tau^+, W^+, \overline{b}...$  $e^{-}, \mu^{-}, \tau^{-}, W^{-}, b...$ 

What happens to the decay products ?

$$\chi - (??) e^+, \mu^+, \tau^+, W^+, \bar{b}...$$

$$\chi - (??) e^-, \mu^-, \tau^-, W^-, b...$$

What happens to the decay products?

One Caveat : We restrict ourself to lifetime > 1000 s. => We can neglect hadronic products! e.g. Jedamzik PRD D74 (2006) 103509

Only BBN constraints (for very short lifetime) are sensitive.

$$\chi - (??) \qquad e^+, \mu^+, \tau^+, W^+, \bar{b}...$$

$$\chi - (??) \qquad e^-, \mu^-, \tau^-, W^-, b...$$

What happens to the decay products ?

One Caveat : We restrict ourself to lifetime > 1000 s. => We can neglect hadronic products! e.g. Jedamzik PRD D74 (2006) 103509

Only BBN constraints (for very short lifetime) are sensitive.

 $e^{\pm}$  and  $\gamma$  interact with the plasma = baryons (AKA intergalactic medium) + CMB.

$$\chi - (??) \qquad e^+, \mu^+, \tau^+, W^+, \bar{b}... \\ e^-, \mu^-, \tau^-, W^-, b...$$

What happens to the decay products ?

One Caveat : We restrict ourself to lifetime > 1000 s. => We can neglect hadronic products! e.g. Jedamzik PRD D74 (2006) 103509

Only BBN constraints (for very short lifetime) are sensitive.

 $e^{\pm}$  and  $\gamma$  interact with the plasma = baryons (AKA intergalactic medium) + CMB.

• They lose their energy through interaction with CMB  $e\gamma_{\rm CMB} \rightarrow e\gamma \qquad \gamma\gamma_{\rm CMB} \rightarrow \gamma\gamma \qquad \gamma\gamma_{\rm CMB} \rightarrow e^+e^-$ 

spectral distortions

$$\chi - (??) \qquad e^+, \mu^+, \tau^+, W^+, \bar{b}...$$

$$\chi - (??) \qquad e^-, \mu^-, \tau^-, W^-, b...$$

What happens to the decay products ?

One Caveat : We restrict ourself to lifetime > 1000 s. => We can neglect hadronic products! e.g. Jedamzik PRD D74 (2006) 103509

Only BBN constraints (for very short lifetime) are sensitive.

 $e^{\pm}$  and  $\gamma$  interact with the plasma = baryons (AKA intergalactic medium) + CMB.



spectral distortions

BBN, CMB anisotropies

Vivian Poulin - LAPTh/RWTH

Cosmological constraints on DM decays



Cosmology can constrain many different lifetimes !



Cosmology can constrain many different lifetimes !



Cosmology can constrain many different lifetimes!



Cosmology can constrain many different lifetimes!



Recombination in a nutshell

$$H^+ + e^- \leftrightarrow H(1s) + \gamma(E > 13.6 \text{ eV})$$

leads to the « saha » equation at equilibrium



Recombination in a nutshell

$$H^+ + e^- \leftrightarrow H(1s) + \gamma(E > 13.6 \text{ eV})$$

leads to the « saha » equation at equilibrium



Recombination in a nutshell  $H^+ + e^- \leftrightarrow H(1s) + \gamma(E > 13.6 \text{ eV})$ leads to the « saha » equation at equilibrium 1s The « three-levels atom » *H* ++ *e*- $H^+ + e^- \leftrightarrow H^* + \gamma$ followed by  $H(2p) \leftrightarrow H(1s) + \gamma$  $H(2s) \leftrightarrow H(1s) + \gamma + \gamma$ 





# $\begin{array}{l} \mbox{Evolution equations for $x_e$}: the free electron fraction \\ \mbox{and $T_m$}: the matter temperature \\ \end{array}$

$$\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)} [R_s(z) - I_s(z)]$$

$$\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[ 2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) \right]$$



# $\begin{array}{ll} \mbox{Evolution equations for $x_e$}: the free electron fraction \\ \mbox{and $T_m$}: the matter temperature \\ \end{array}$

$$\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)} [R_s(z) - I_s(z) - I_X(z)]$$

$$\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[ 2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) + K_h \right]$$



# $\begin{array}{l} \mbox{Evolution equations for $x_e$}: the free electron fraction \\ \mbox{and $T_m$}: the matter temperature \\ \end{array}$

$$\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)} [R_s(z) - I_s(z) - I_X(z)]$$

$$\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[ 2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) + K_h \right]$$

$$H^+ + e^-$$

$$I_X(z) = I_{X_i}(z) + I_{X_\alpha}(z)$$

$$I_{X_i}(z) = \frac{1}{n_H(z)E_i} \frac{dE}{dVdt} \Big|_{\text{dep},i} \quad I_{X_i}(z) = \frac{(1-C)}{n_H(z)E_\alpha} \frac{dE}{dVdt} \Big|_{\text{dep},\alpha}$$

$$K_h(z) = -\frac{2}{H(z)3k_bn_H(z)(1+f_{He}+x_e)} \frac{dE}{dVdt} \Big|_{\text{dep},h}$$

Vivian Poulin - LAPTh/RWTH

Cosmological constraints on DM decays

# $\begin{array}{ll} \mbox{Evolution equations for $x_e$}: the free electron fraction \\ \mbox{and $T_m$}: the matter temperature \\ \end{array}$



$$\frac{dE}{dVdt}\Big|_{\rm inj}(z) = (1+z)^3 f_{\rm dcdm} \rho_{\rm dm} c^2 \times \Delta_{\rm em} \times \frac{e^{-t/\tau}}{\tau}$$

$$\frac{dE}{dVdt}\Big|_{\rm inj}(z) = (1+z)^3 f_{\rm dcdm} \rho_{\rm dm} c^2 \times \Delta_{\rm em} \times \frac{e^{-t/\tau}}{\tau}$$

number density of decaying particles

$$\frac{dE}{dVdt}\Big|_{\rm inj}(z) = (1+z)^3 f_{\rm dcdm} \rho_{\rm dm} c^2 \times \Delta_{\rm em} \times \frac{e^{-t/\tau}}{\tau}$$

number density of decaying particles e.m. energy released per decay

 $\times$ 

$$\frac{dE}{dVdt}\Big|_{inj}(z) = (1+z)^3 f_{dcdm} \rho_{dm} c^2 \times \Delta_{em} \times \frac{e^{-t/\tau}}{\tau}$$
number density   
of decaying particles  $\times$  e.m. energy   
released per decay  $\times$  decay   
probability

$$\frac{dE}{dVdt}\Big|_{inj}(z) = (1+z)^3 f_{dcdm} \rho_{dm} c^2 \times \Delta_{em} \times \frac{e^{-t/\tau}}{\tau}$$
number density  $\epsilon_{em} \approx \frac{e.m. \, energy}{released per decay} \times \frac{decay}{probability}$ 

Typical parametrization through the  $f_c(z, x_e)$  functions :

see e.g. Slatyer et al. [arXiv:arXiv:0906.1197]

$$\frac{dE}{dVdt}\Big|_{\rm dep,c}(z) = f_c(z, x_e) \frac{dE}{dVdt}\Big|_{\rm inj}(z)$$

$$\frac{dE}{dVdt}\Big|_{inj}(z) = (1+z)^3 f_{dcdm} \rho_{dm} c^2 \times \Delta_{em} \times \frac{e^{-t/\tau}}{\tau}$$
number density   
of decaying particles  $\times$  e.m. energy   
released per decay  $\times$  decay   
probability

Typical parametrization through the  $f_c(z, x_e)$  functions :

see e.g. Slatyer et al. [arXiv:arXiv:0906.1197]

$$\frac{dE}{dVdt}\Big|_{\rm dep,c}(z) = f_c(z, x_e) \frac{dE}{dVdt}\Big|_{\rm inj}(z)$$

 $f_c(z, x_e)$  is the key quantity, it encodes:

- What fraction of the injected energy is left to interact with the IGM
- How this is energy is distribution among each channel :'heat', 'ionization', 'excitation'
$$\frac{dE}{dVdt}\Big|_{inj}(z) = (1+z)^3 f_{dcdm} \rho_{dm} c^2 \times \Delta_{em} \times \frac{e^{-t/\tau}}{\tau}$$
number density  $\times$  e.m. energy released per decay  $\times$  decay probability

Typical parametrization through the  $f_c(z, x_e)$  functions :

see e.g. Slatyer et al. [arXiv:arXiv:0906.1197]

$$\frac{dE}{dVdt}\bigg|_{\rm dep,c}(z) = f_c(z, x_e) \frac{dE}{dVdt}\bigg|_{\rm inj}(z)$$

 $f_c(z, x_e)$  is the key quantity, it encodes:

- What fraction of the injected energy is left to interact with the IGM
- How this is energy is distribution among each channel :'heat', 'ionization', 'excitation'

In practice, it depends on details of the particle physics and injection history.

# The free electron fraction carries information on the time / amount of energy injection !

 $\Delta f_{\rm eff} = 1, z_{\rm reio} = 8.24$ 



## Many lifetime dependent effects on the CMB power spectra !



- Long lifetime : looks like reionization.
- Short lifetime: can have very peculiar behavior!
  - => CMB anisotropy studies have a handle on the time / amount of energy injection.

## CMB anisotropies very powerful at constraining $\tau = [10^{12}, 10^{26}]$ s







### The light element abundances

BBN happened few min after BB



Vivian Poulin - LAPTh/RWTH

### The light element abundances





Strong observational constraints  $Y_p > 0.2368$   $2.56 \times 10^{-5} < {}^{2}\text{H/H} < 3.48 \times 10^{-5}$  ${}^{3}\text{He/H} < 1.5 \times 10^{-5}$ 

For 3 nuclei :

### The light element abundances





## BBN very powerful at constraining $\tau = [10^4, 10^{12}]$ s





## $\mu$ and y spectral distortions

see e.g. Chluba & Sunyaev [arXiv:1109.6552]

Following injection of photons/electrons, scattering processes should thermalize the distribution.

$$\Delta I(\nu) = I_{\rm true}(\nu) - I_{\rm bb}(\nu)$$

If those processes go out of equilibrium, in full generality:

Most important spectral distortions:  $\boldsymbol{\mu}$  and  $\boldsymbol{y}.$ 

## $\mu$ and y spectral distortions

Following injection of photons/electrons, scattering processes should thermalize the distribution.

If those processes go out of equilibrium, in full generality:

 $\Delta I(\nu) = I_{\rm true}(\nu) - I_{\rm bb}(\nu)$ 

see e.g. Chluba & Sunyaev

[arXiv:1109.6552]

Most important spectral distortions:  $\mu$  and y.



 $\mu$  = creation of a chemical potential

y = compton heating (or cooling!) of the CMB gas

Intermediate distortions probe the time dependance of the energy injection history

credit: Jens Chluba, « Ecole de Gif », 2014

## CMB vs BBN vs spectral distortions

## Cosmology can constrain a very broad range of lifetime !!



Vivian Poulin - LAPTh/RWTH

21 cm



21 cm



- Hyperfine transition from neutral hydrogen
- Very sensitive probes of the Epoch of Reionization (EoR)
- Key quantities : Spin temperature and differential brightness temperature



- Hyperfine transition from neutral hydrogen
- Very sensitive probes of the Epoch of Reionization (EoR)
- Key quantities : Spin temperature and differential brightness temperature



scattering with CMB

21 cm

collision within the gas

interaction with UV from stars



- Hyperfine transition from neutral hydrogen
- Very sensitive probes of the Epoch of Reionization (EoR)
- Key quantities : Spin temperature and differential brightness temperature

$$\frac{n_1}{n_0} = 3e^{-E_{10}/k_B T_S}$$
  
Exc. = Des-exc. 
$$T_S^{-1} = \frac{T_{CMB}^{-1} + x_c T_K^{-1} + x_\alpha T_c^{-1}}{1 + x_c + x_\alpha}$$

scattering with CMB

collision within the gas

interaction with UV from stars

Compare patch of the sky with/without hydrogen clouds:

$$\delta T_b(\nu) = \frac{T_s - T_{\rm CMB}}{1+z} \left(1 - \exp(-\tau_{\nu 21})\right)$$

see e.g. Furlanetto et al. [astro-ph/0608032]

Vivian Poulin - LAPTh/RWTH

Cosmological constraints on DM decays



- Hyperfine transition from neutral hydrogen
- Very sensitive probes of the Epoch of Reionization (EoR)
- Key quantities : Spin temperature and differential brightness temperature



scattering with CMB

21 cm

collision within the gas

interaction with UV from stars

Compare patch of the sky with/without hydrogen clouds:

$$\delta T_b(\nu) = \frac{T_s - T_{\rm CMB}}{1+z} \left(1 - \exp(-\tau_{\nu 21})\right)$$

see e.g. Furlanetto et al. [astro-ph/0608032]

Difficulty = Huge astrophysical uncertainty, one trick : SKA will be able to measure  $\delta T_b$  = 5-10 mK up to z= 20/25 (V = 60 MHz)

Vivian Poulin - LAPTh/RWTH

Cosmological constraints on DM decays

### We neglect stars : valid until $z \approx 15$ , still in the SKA range !



Potential « smoking gun » signal from DM e.m. decay at the end (and during !) the dark ages

Vivian Poulin - LAPTh/RWTH

Cosmological constraints on DM decays

## SKA could be better at detecting - or constraining - e.m. decay



Vivian Poulin - LAPTh/RWTH



Exotic particle decays (including DM) can be strongly constrained by Cosmology.

- Bounds are competitive with diffuse gamma-ray background ones.
- Combination of BBN /spectral distortions / CMB allow constraining more than
   20 orders of magnitude in lifetime, and 10 orders of magnitude in abundances.
- can also constrain non-electromagnetic decay!



Exotic particle decays (including DM) can be strongly constrained by Cosmology.

- Bounds are competitive with diffuse gamma-ray background ones.
- Combination of BBN /spectral distortions / CMB allow constraining more than
   20 orders of magnitude in lifetime, and 10 orders of magnitude in abundances.
- can also constrain non-electromagnetic decay!

Next Step : 21 cm and reionization ! Many experiments are launched (e.g. SKA, HERA).

• First result quite pessimistic given the huge astrophysical uncertainties.

• Some hope : the dark ages, when no stars were there.



Exotic particle decays (including DM) can be strongly constrained by Cosmology.

- Bounds are competitive with diffuse gamma-ray background ones.
- Combination of BBN /spectral distortions / CMB allow constraining more than
   20 orders of magnitude in lifetime, and 10 orders of magnitude in abundances.
- can also constrain non-electromagnetic decay!

Next Step : 21 cm and reionization ! Many experiments are launched (e.g. SKA, HERA).

- First result quite pessimistic given the huge astrophysical uncertainties.
- Some hope : the dark ages, when no stars were there.

stay tuned! Many results to come!





Bad Honnef, 31/08/2016



The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

T = 2.72548 + -0.00057 K

Fluctuations  $\mathcal{O}(10^{-5})$  !

Bad Honnef, 31/08/2016

### 1. CMB Physics



The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

T = 2.72548 + - 0.00057 K

Fluctuations  $\mathcal{O}(10^{-5})$  !

In every point on the sky :

 $\frac{T(\theta,\phi)-\bar{T}}{\bar{T}} = \frac{\delta T}{\bar{T}}(\theta,\phi) \equiv \Theta(\vec{n})$ 

The CMB temperature fluctuations are random !



The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

T = 2.72548 + - 0.00057 K

Fluctuations  $\mathcal{O}(10^{-5})$  !

In every point on the sky :

 $\frac{T(\theta,\phi)-\bar{T}}{\bar{T}} = \frac{\delta T}{\bar{T}}(\theta,\phi) \equiv \Theta(\vec{n})$ 

The CMB temperature fluctuations are random !

Our theory does not predict temperature fluctuations, only statistical properties. => We need moments of the distribution ! the so called « n-points correlation functions »



The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

T = 2.72548 + - 0.00057 K

Fluctuations  $\mathcal{O}(10^{-5})$  !

In every point on the sky :

 $\frac{T(\theta,\phi)-\bar{T}}{\bar{T}} = \frac{\delta T}{\bar{T}}(\theta,\phi) \equiv \Theta(\vec{n})$ 

The CMB temperature fluctuations are random !

Our theory does not predict temperature fluctuations, only statistical properties. => We need moments of the distribution ! the so called « n-points correlation functions »

Paradigm :  $\Theta(\vec{n})$  follows a Gaussian distribution. Linear perturbation theory ensures that this will always be the case.



The CMB is the most perfect black body in the Universe, it is very homogeneous and isotropic.

T = 2.72548 + - 0.00057 K

Fluctuations  $\mathcal{O}(10^{-5})$  !

In every point on the sky :

 $\frac{T(\theta,\phi)-\bar{T}}{\bar{T}} = \frac{\delta T}{\bar{T}}(\theta,\phi) \equiv \Theta(\vec{n})$ 

The CMB temperature fluctuations are random !

Our theory does not predict temperature fluctuations, only statistical properties. => We need moments of the distribution ! the so called « n-points correlation functions »

Paradigm :  $\Theta(\vec{n})$  follows a Gaussian distribution. Linear perturbation theory ensures that this will always be the case.

Only 2 moments of interest :

 $\langle \Theta(\vec{n}) \rangle = 0 \qquad \langle \Theta(\vec{n_1})\Theta(\vec{n_2}) \rangle \neq 0$ 

Vivian Poulin - RWTH

Constraining DM properties with the CMB

$$\Theta(\vec{n}) \equiv \frac{\delta T}{T}(\theta, \phi) = \sum_{\ell, m} a_{\ell m} Y_{\ell m}(\theta, \phi)$$

$$\langle \Theta(\vec{n_1})\Theta(\vec{n_2})\rangle = \sum_{\ell,m,\ell',m'} \langle a_{\ell m} a^*_{\ell'm'} \rangle Y_{\ell m}(\vec{n_1}) Y^*_{\ell'm'}(\vec{n_2})$$

$$\langle a_{\ell m} \rangle = 0 \qquad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} \frac{C_{\ell}}{C_{\ell}}$$

$$\Theta(\vec{n}) \equiv \frac{\delta T}{T}(\theta, \phi) = \sum_{\ell, m} a_{\ell m} Y_{\ell m}(\theta, \phi)$$

$$\langle \Theta(\vec{n_1})\Theta(\vec{n_2})\rangle = \sum_{\ell,m,\ell',m'} \langle a_{\ell m} a^*_{\ell'm'} \rangle Y_{\ell m}(\vec{n_1}) Y^*_{\ell'm'}(\vec{n_2})$$

$$\langle a_{\ell m} \rangle = 0 \qquad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

It represents the variance of the distribution for a given scale  $\ell = \pi/\theta$  (in real space, you can relate it to the amplitude of fluctuations in a given box size)

$$\Theta(\vec{n}) \equiv \frac{\delta T}{T}(\theta, \phi) = \sum_{\ell, m} a_{\ell m} Y_{\ell m}(\theta, \phi)$$

$$\langle \Theta(\vec{n_1})\Theta(\vec{n_2})\rangle = \sum_{\ell,m,\ell',m'} \langle a_{\ell m} a^*_{\ell'm'} \rangle Y_{\ell m}(\vec{n_1}) Y^*_{\ell'm'}(\vec{n_2})$$

$$\langle a_{\ell m} \rangle = 0 \qquad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

It represents the variance of the distribution for a given scale  $\ell = \pi/\theta$  (in real space, you can relate it to the amplitude of fluctuations in a given box size)

We can determine this power spectra both experimentally and theoretically ! 6 free parameters to fit : { $\omega_b$ ,  $\omega_{cdm}$ , h,  $A_s$ ,  $n_s$ ,  $z_{reio}$ }

$$\Theta(\vec{n}) \equiv \frac{\delta T}{T}(\theta, \phi) = \sum_{\ell, m} a_{\ell m} Y_{\ell m}(\theta, \phi)$$

$$\langle \Theta(\vec{n_1})\Theta(\vec{n_2})\rangle = \sum_{\ell,m,\ell',m'} \langle a_{\ell m} a^*_{\ell'm'} \rangle Y_{\ell m}(\vec{n_1}) Y^*_{\ell'm'}(\vec{n_2})$$

$$\langle a_{\ell m} \rangle = 0 \qquad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

It represents the variance of the distribution for a given scale  $\ell = \pi/\theta$  (in real space, you can relate it to the amplitude of fluctuations in a given box size)

We can determine this power spectra both experimentally and theoretically ! 6 free parameters to fit : { $\omega_b$ ,  $\omega_{cdm}$ , h,  $A_s$ ,  $n_s$ ,  $z_{reio}$ }

> DM interacts only gravitationally in the standard Cosmology => Constraints can be derived

Vivian Poulin - RWTH

Constraining DM properties with the CMB




see e.g. Chluba & Sunyaev

[arXiv:1109.6552]

## µ and y spectral distortions

Scattering processes should thermalize the injected photons, but if those processes go out of equilibrium

 $\mu$  and y are (almost) eigenmodes in the PCA!

In full generality:  $\Delta I(\nu) = I_{true}(\nu) - I_{bb}(\nu)$ 

## $\boldsymbol{\mu}$ and $\boldsymbol{y}$ spectral distortions

see e.g. Chluba & Sunyaev [arXiv:1109.6552]

Scattering processes should thermalize the injected photons, but if those processes go out of equilibrium

In full generality:

$$\Delta I(\nu) = I_{\rm true}(\nu) - I_{\rm bb}(\nu)$$

$$y \equiv \frac{1}{4} \left[ \frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right]_{y} \simeq \frac{1}{4} \int \mathcal{J}_{\rm bb} \mathcal{J}_{y} \frac{1}{\rho_{\gamma}} \left( \frac{dE}{dt} \bigg|_{\gamma} \right) dt$$

μ and y are (almost) eigenmodes in the PCA!

compton heating (or cooling!) of the CMB gas

creation of a chemical potential (more/less photons than a BB)

 $\mu \equiv 1.401 \left[ \frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right]_{\mu} \simeq 1.4 \int \mathcal{J}_{\rm bb} \mathcal{J}_{\mu} \frac{1}{\rho_{\gamma}} \left( \frac{dE}{dt} \bigg|_{\gamma} \right) dt,$ 

# $\boldsymbol{\mu}$ and $\boldsymbol{y}$ spectral distortions

see e.g. Chluba & Sunyaev [arXiv:1109.6552]

Scattering processes should thermalize the injected photons, but if those processes go out of equilibrium

In full generality:

$$y \equiv \frac{1}{4} \left[ \frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right]_{y} \simeq \frac{1}{4} \int \mathcal{J}_{\rm bb} \mathcal{J}_{y} \frac{1}{\rho_{\gamma}} \left( \frac{dE}{dt} \Big|_{\gamma} \right) dt$$

$$\mu \equiv 1.401 \left[ \frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right]_{\mu} \simeq 1.4 \int \mathcal{J}_{\rm bb} \mathcal{J}_{\mu} \frac{1}{\rho_{\gamma}} \left( \frac{dE}{dt} \Big|_{\gamma} \right) dt,$$

 $\Delta I(\nu) = I_{\rm true}(\nu) - I_{\rm bb}(\nu)$ 

creation of a chemical potential (more/less photons than a BB) compton heating (or cooling!) of the CMB gas

 $\mu$  and y are (almost) eigenmodes in the PCA!

$$\mathcal{J}_{\rm bb}(z) \approx \exp[-(z/z_{\mu})^{5/2}], \quad \mathcal{J}_{y}(z) \approx \left[1 + \left(\frac{1+z}{6 \times 10^{4}}\right)^{2.58}\right]^{-1}, \quad \mathcal{J}_{\mu}(z) \approx 1 - \mathcal{J}_{y}.$$

Visibility functions related to the range of efficiency of typical processes:

- Compton scattering for Comptonization-y
- Double Compton and Bremsstrahlung for  $\,\mu\text{-distortion}$

#### Electromagnetic Cascade in a nutshell

We want to describe electromagnetic energy injection in a plasma of photons (very few e+e-, nuclei) :

what is the resulting metastable distribution of photons ?

Basic processes are (at high energies)



Particle multiplication and energy redistribution => Electromagnetic cascade !

### Electromagnetic Cascade in a nutshell

We want to describe electromagnetic energy injection in a plasma of photons (very few e+e-, nuclei) :

what is the resulting metastable distribution of photons ?

Basic processes are (at high energies)



Particle multiplication and energy redistribution => Electromagnetic cascade !

The first process has a threshold, below it

 $\gamma\gamma_{\rm th} \to \gamma\gamma$ 

and eventually (very low rates)

$$\gamma N \to eN \qquad \gamma e_{\rm th} \to \gamma e$$

#### **BBN** Constraints



- Shape independent of the energy / temperature of the bath: Only dictates the <u>overall normalisation;</u>
- Threshold due to pair production.

# Constraints on evaporating PBH



## Constraints on sterile neutrinos

