

### Status of the Stereo experiment : search of a sterile neutrino

LPSC: L. Bernard (PhD), V. Hélaine (postdoc), S. Kox, J. Lamblin, F. Montanet, J.S. Réal, **T. Salagnac** (PhD), A. Stutz

LAPP: P. Del Amo Sanchez, H. Pessard, V. Sergeyeva (postdoc)

9th December 2016







**Reactor anomaly :**  $\overline{\nu_e}$  deficit at  $3\sigma$  $\overline{\nu_e}$  flux measured by several experiments at less than 100 m from reactor





"Gallium" anomaly :  $\nu_e$  deficit at 2.7  $\sigma$  measured by SAGE and GALEX with calibration sources deployed in the center of their solar neutrino detectors

#### Possible explanations :

- $\bullet\,$  Error in the predicted  $\nu\,$  fluxes
- $\bullet~{\rm New}~\nu$  flavor inducing short distance oscillation : a sterile neutrino

#### Stereo experiment

**Objective :** Probe sterile neutrino parameters space  $(\Delta m_{st}^2, \sin^2(2\theta_{st}))$ 

- $\bullet\,$  Measure the distortion of the  $\overline{\nu_e}$  spectrum for different distances at about 10m from ILL core
- $\bullet\,$  Measure a reference of (quasi) pure  $^{235}\text{U}$  neutrino spectrum







Detection with IBD reaction :

**Prompt** - positron  $\Rightarrow E_{vis} = E_{\nu} - 0.782 \, MeV$ 

Delayed - n-capture on gadolinium (Gd) few  $\mu s$  after prompt

#### Stereo site at ILL

#### Reactor :

- $\bullet\,$  Nominal reactor power  $\sim$  57 MW
- $\bullet\,$  Highly  $^{235}\text{U}$  enriched at 93%
- Compact core (diameter = 37 cm) prevent oscillation signal being washed out

#### Detector position :

- Stereo covers [8.9 11.1]m from core with a possible extension to 12.3 m ( $\sim$  3 cells width)
- Overburden of water channel (15 m.w.e.)  $\Rightarrow$  shielding against muons

## HCo D19 IN20

#### Drawbacks :

• High level of background  $(n, \gamma)$  from neighboring experiments

#### Stereo detector

#### Two sub-volumes :

Target (for IBD) segmented in 6 identical cells

Gamma-catcher to collect escaping gamma, improve efficiency and energy resolution



- 48 PMTs : 4 PMTs per Target cell and 4 or 8 PMTs per Gamma-catcher cell
- Cell separation by acrylic wall with multi-layer of VM2000 and air for total reflection  $\Rightarrow$  improved light collection

Detector assembled in spring 2016 and tested without liquid !

#### Background and shielding

#### Neutron and $\gamma$ background measurement :

- Fast n from reactor and beam tubes
- Thermal *n* from neighboring experiments  $\Rightarrow$  *n*-capture causing  $\gamma$  emission

#### External shielding :





- $\bullet\,$  Magnetic field from IN20  $\Rightarrow\,$  gain variation of PMTs over time
- $\bullet~\mu$  rate and distribution measurement

Simulation of the  $\gamma$ ,  $n,~\mu$  and magnetic field backgrounds  $\Rightarrow$  design and validation of the detector shielding

#### Background and shielding

#### Detector shielding :

- 6 tons of borated polyethylene
- 65 tons of lead
- $\bullet\ B_4C$  sheet all around the detector structure
- Magnetic shielding (soft iron +  $\mu$ Metal)



August 2016 : Assembly of the shielding and the detector complete September 2026 : Detector moved to its data-taking position !





#### Muon veto

**Muon veto** : Water Cerenkov tank to detect muons with 20 PMTs and Tyvek sheets for reflectivity

#### Studies :

- Several prototypes tested before final instrument
- Geometrical effect vs  $\mu$  efficiency
- Lower  $\gamma$  sensitivity with 4 PMTs charge trigger





#### Electronics



- Dedicated electronics hosted in a single  $\mu\text{-}\mathsf{TCA}$  crate
- Two programmable levels of trigger (FPGA) :
  - ▶ 1st level per front-end board ⇒ trigger on single PMT, sum 4 or 8 PMTs
  - ▶ 2nd level on the trigger board ⇒ trigger between the different sub-detectors (target, gamma-catcher, veto)

- 1kHz without deadtime
- Debug mode : save pulse on disk but with a large deadtime





#### Calibration system



#### LED System :

- Photo-electron calibration
- Charge linearity measurement
- Monitoring : gain, light collection
- UV LED for liquid properties

Calibration in energy with radioactive sources ( $\gamma$ , n), deployed by two external systems ... :

- Pantograph system : around the detector
- Rail system : under the detector
- $\ldots$  and one internal system :
  - 3 tubes in 3 different cells



Test of the pantograph at LAPP



#### Insertion of the pantograpth at ILL



#### Since August :

- Installed around the detector vessel
- Tested and currently working with calibration source



#### Different sources of calibration :

- Gamma sources : energy scaling, efficiency
- Neutron sources : Pulse Shape Discrimination (PSD) efficiency and n-efficiency

#### 10th November 2016:

- ASN gave its authorization for the Stereo experiment
- Detector filled with liquid scintillator and buffer oil

#### Event of prompt neutrino candidate :





#### Event of background in Gamma-catcher :



First source calibration done :

- ${\sim}280~\text{PEs/MeV}$  in Target cells as expected
- Small top-bottom effect on the detector response : 2% of differences

Buffer leak in cell 4 and one short gamma-catcher cell :

- Decrease by a factor 2.5 of the light collection
- LS and buffer oil chemically compatible



Related systematics under studies

Data taking already started : after 10 days of commissioning

- $\bullet\,$  Acquisition rate of  $\sim\,3\,{\rm kHz}$  with  $\sim\,1.8\%$  deadtime at  ${\sim}250$  keV threshold
- Single rate in neutrino window (2 MeV  $< E_{vis} < 8 \, {\rm MeV}$ ) :  ${\sim} 14 \, {\rm Hz}$

• Stereo detector fully installed and filled with liquid scintillator, since the 10th November 2016 !

• Stereo started taking data after 10 days of commissioning

• First data taking period until March 2017, with 80 days reactor ON

• First result expected in 2017 !

# Thanks for your attention !



funded by :















#### Gamma pulse shapes and z-dependence

Pulse shape of gamma using a Mn source at different high in a cell



#### Light leaks with empty detector



**Measurements :** with **empty** detector  $\Rightarrow \sim 10\%$  light leaks

Good PMT charge linearity needed for energy measurement !

- Use light injection system with 4 LEDs triggered simultaneously according to all possible combinations
- Use single LED charge to compute expected charge of LED combinations



#### Muon background

- Muons are the strongest souce of bacground
  - MIP : 2MeV/cm and cell height 90cm  $\Rightarrow$  180 MeV dE  $\Rightarrow$  Saturation of the PMT will affect E reconstruction
- Create fast neutrons by spallation ⇒ Irreducible correlated background

Construction of a **transportable detector** to measure **muon rates** vs **zenithal angle** 







All PMTs have been tested and installed into the detector and the muon veto



- 300 days of data acquisition
- 400  $\nu$  per day :
  - $E_{prompt} > 2$  MeV, Eff = 79%
  - $E_{delayed} > 5$  MeV, Eff = 60%
  - Deadtime = 5%
  - $\blacktriangleright \ L_{Reactor} \sim 10 \ m$

• 
$$S / B = 1.5$$

- Energy scale = 2% (by cell)
- Spectrum shape = [0.7% 4%]
- Norm = 3.7% (correlated)
- Norm = 2% (uncorrelated by cell)

Complete GEANT4 model to simulate the detector response



- Similar response between center and border cell ·
  - RMS/Peak(center cell) = 11.5%
  - RMS/Peak(border cell) = 11.7%►



•  $60.1\% \pm 0.5\%$  for border cell

Response to 20 keV neutrons

Optimization of the energy resolution and the similarity of response between cells