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A Golden Era of Transient Astrophysics:
Multi-messenger
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Soft X-ray flux (ergcm™2%s™1)
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Peak Luminosity [MV]
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Observer’s perspectives
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Scientific Conclusions
(on subjects discussed at this meeting)

Gamma-ray bursts (V. Connaughton):
* Located in a wide redshift range, good cosmic probes
» Two broad types of progenitor systems, but explicit progenitors remain elusive

 Afterglow generally understood, but prompt emission mechanism remains
debated

Gravitational waves (T. Li):
» Finally detected!
» The strongest sources are predominantly BH-BH mergers
» Relatively large BHs
Neutrinos (J. Vandenbrouke):
» Astrophysical high-energy neutrinos discovered
* Origin unknown but likely not from bright GRBs
Fast radio bursts (E. Petroff):
« Astrophysical origin
» One repeating, at cosmological distance



Scientific Questions:
|. Gamma-ray bursts

Are short GRBs produced by NS-NS mergers or NS-
BH mergers (the Gehrels’ question) or something
else?

Can both BHs and magnetars make GRBs?

Can we identify more progenitor systems for long
GRBs (e.g. UL-GRBs, LL-GRBs ...) (0. Gotz)

What's the composition of GRB jets (fireball vs.
Poynting flux)?

What's the energy dissipation mechanism (shock vs.
magnetic reconnection)?

What's the radiation mechanism of GRB
(synchrotron vs. thermal Comptonization)?



GRB Emission Models
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Uncertainties in GRB Prompt Emission:

What is the jet composition (baryonic vs. Poynting flux)?

Where is (are) the dissipation radius (radii)? — three possible locations

How is the radiation generated (synchrotron, Compton scattering, thermal)?



SVOM-led GRB observation campaign

« ECLAIRS/GRM: detailed -
prompt emission physics ~

 MXT/VT:. detailed afterglow
physics

« GWAC: prompt and even prior
emission from GRBs

e POLAR/HXMT (s.N. zhang):
complementary information

* Multi-wavelength / multi-
messenger observational
campaign

Talks by Cordier, Wei, Daigne, Bajat, Schanne, Xin, Klotz,
Corre, Han, Wang, O’'Brien, Goldwurm, Buswitz ...



Scientific Questions:
ll. Gravitational waves & EM counterparts

* Where are BH-NS and NS-NS mergers?

* Are BH-NS and NS-NS mergers
associated with bright EM counterparts (.
Tanvir, J. Osborne, D. Xu)?

« Can BH-BH mergers make detectable EM
counterparts (8. zhang)?

» Can we finally learn the equation of state
of nuclear matter (neutron / quark stars)
from GW observations?




Observational hints of a possible supra-massive /
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Supra-massive and stable NSs/QSs

i 1 A

b)

""""

vvvvvv

14.5

15.0 1

Log (&) (g/cm’)

A. Lietal. (2016, PRD, 94, 083010, arXiv:1606.02934)

5.5

Example EoSs:

NS: BSK20
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A multi-messenger approach to
constrain NS/QS equation-of-state

« GW signal: NS-NS system
parameters (mass of the
merger product); ring-down
phase carries info of EoS.

- EM signal: brightness of
the X-ray emission,
collapse time — infer initial
period, magnetic field,
ellipticity, etc.; kilo-/merger- ;
nova signal - infer ejected 10 |
Mass . GRB 090515 -

« Putting everything together:
constrain NS/QS EoS! Rowlinson et al. (2010)
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Scientific Questions:
[Il. Neutrinos

What source(s) produce astrophysical high-
energy neutrinos?

Do various high-energy transients (GRBs,
compact star mergers, AGN flares, even FRBs)
produce high-energy neutrinos (J. vandenbrouke)?

What is the connection between the neutrino
data and the observations of gamma-ray
background and ultra-high-energy cosmic rays?

What physics do we learn from the detection/
non-detection of neutrino from astrophysical
sources?



Non-detection of neutrinos by Icecube

lceCube did not detect
neutrinos from GRBs
yet, upper limit 3 times
lower than the most
optimistic predictions
(Waxman & Bahcall

LETTER

doi:10.1038/nature11068

An absence of neutrinos associated with cosmic-ray
acceleration in y-ray bursts

IceCube Collaboration*

Very energetic astrophysical events are required to accelerate cosmic
rays to above 10"* electronvolts. GRBs (y-ray bursts) have been pro-
posed as possible candidate sources' *. In the GRB “fireball’ model,
cosmic-ray acceleration should be accompanied by neutrinos pro-
duced in the decay of charged pions created in interactions between
the high-energy cosmic-ray protons and y-rays'. Previous searches
for such neutrinos found none, but the constraints were weak
because the sensitivity was at best approximately equal to the pre-
dicted flux®7. Here we report an upper limit on the flux of energetic
neutrinos associated with GRBs that is at least a factor of 3.7 below
the predictions**'°. This implies either that GRBs are not the only
sources of cosmic rays with energies exceeding 10'* electronvolts or
that the efficiency of neutrino production is much lower than has

been predicted.
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lceCube results

Asin our previous study’, we conducted two analyses of the IceCube
data. In a model-dependent search, we examine data during the period
[ y-ray emission reported by any satellite for neutrinos with the
y spectrum predicted from the 1
GRBs*”. The model-independent analysis

v spectra of individual
arches more generically
for neutrinos on wider timescales, up to the limit of sensitivity to small
numbers of events at = 1 day, or with different spectra. Both analyses
follow the methods used in our previous work’, with the exception of
slightly changed event selection and the addition of the Southern
Hemisphere to the model-independent search. Owing to the large
background of downgoing muons from the southern sky, the
Southern Hemisphere analysis is sensitive mainly to higher-energy
events (Supplementary Fig. 3). Systematic uncertainties from detector
effects have been included in the reported limits from both analyses,



Solar neutrino problem

2

» Early searches for solar
neutrinos failed to find the
predicted number (about
1/3 of predicted)

« Debate:

— Astrophysics wrong?
— Physics wrong?

« It turns out that neutrinos ;ﬂ\\'.

oscillate — physics was « .
wrong Home_stake Solar Super Kamiokande
Neutrino
Observatory




A GRB neutrino problem?

* |cecube did not detect high
energy neutrinos from
GRBs as expected from the
theories

« A similar question arises:

— Astrophysics wrong?
— Physics wrong?

« This time, very likely

astrophysics is wrong!

GRB models invoke a lot more
uncertainties than solar models.

LETTER

d0i:10.1038/nature11068

An absence of neutrinos associated with cosmic-ray
acceleration in y-ray bursts

IceCube Collaboration*

Very energetic astrophysical events are required to accelerate cosmic
rays to above 10" electronvolts. GRBs (y-ray bursts) have been pro-
posed as possible candidate sources' . In the GRB ‘fireball’ model,
cosmic-ray acceleration should be acc ied by neutrinos pro-
duced in the decay of charged pions created in interactions between
the high-energy cosmic-ray protons and y-rays'. Previous searches
for such neutrinos found none, but the constraints were weak
because the sensitivity was at best approximately equal to the pre-
dicted flux*7. Here we report an upper limit on the flux of energetic
neutrinos associated with GRBs that is at least a factor of 3.7 below
the predictions™*'°. This implies either that GRBs are not the only
sources of cosmic rays with energies exceeding 10'® electronvolts or
that the efficiency of neutrino production is much lower than has
been predicted.
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Asin our previous study’, we conducted two analyses of the IceCube
data. In a model-dependent search, we examine data during the period
of y-ray emission reported by any satellite for neutrinos with the
energy spectrum predicted from the y-ray spectra of individual
GRBs*’. The model-independent analysis searches more generically
for neutrinos on wider timescales, up to the limit of sensitivity to small
numbers of events at =1 day, or with different spectra. Both analyses
follow the methods used in our previous work’, with the exception of
slightly changed event selection and the addition of the Southern
Hemisphere to the model-independent search. Owing to the large
background of downgoing muons from the southern sky, the
Southern Hemisphere analysis is sensitive mainly to higher-energy
events (Supplementary Fig, 3). Systematic uncertainties from detector
effects have been included in the reported limits from both analyses,
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GRB Emission Models
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Non-detection of neutrinos constrains GRB
prompt emission models
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Scientific Questions:
V. Fast radio bursts

Do all FRBs repeat (. petroff)?

Are there bright counterparts associated
with FRBs (D. Turpin, C. Gouiffe)?

Are there more than one mechanism to
produce FRBs”? What are the progenitor
systems of FRBs (z. c. pai, y.-w. yu)?

Can FRBs serve as unique cosmic probes
(S. Xu, Y.-P. Yang)?



FRBs vs. GRBs

GRBs FRBs

Step one: Are they 1967 — 1973 2007 — 2015
astrophysical?

Step two: Where are 1973 — 1997 — 2004 2016

they (distance)? (Afterglow counterpart, (Persistent radio
host galaxy) source, host galaxy)
Step three: What make 1998 — 7?7 27?7
them? (SN Ic, GW?) (AGN? GRB?
magnetar-powered
nebula?)

Observationally driven
Healthy dialog between observers and theorists



Multiple progenitor systems?

Repeating/nearby ‘ Catastrophic/cosmological Repeating ‘ Catastrophic?

Compact star merger

Cosmological! Cosmological?
Core collapse ,

LGRBs SGRBs Sub-classes??

Known observationally-defined transients have multiple progenitors (SNe & GRBs)

Following discussion not limited to repeating models



Is FRB121102 representative?

Palaniswamy & Zhang (2017)
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More data are needed!



Multi-wavelength / multi-messenger
Observations of FRBs

* Follow-up observations

» Temporal coincidence observations with
wide field detectors (gamma-ray, X-ray,
optical, GW, neutrino detectors)

» Archival searches on prior emission of any
kind




Transient Astrophysms in the SVOM era
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Historical “Red Army” Long March in Guizhou
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SVOM'’s happy “Long March” towards 2021




