TAROT Robotic Telescopes: Techniques and GRB observations from Swift to SVOM

Alain KLOTZ Professor at Toulouse University (France) IRAP

Second SVOM scientific workshop : Surveying the Fast changing Multi-wavelength Sky with SVOM 24 - 28 April 2017 Qiannan, China

90 degrees

GRBs from gamma to optical detectors

Light curves + images + spectra How to derive some GRB parameters

T90 : GRB duration

- E_{iso}: Isotropic energy
- E_{peak}: Peak energy
- α,β : Gamma spectrum slopes
- R.A, Decl : Accurate position

The Swift area

Gamma Ray Burts – Redshifts observation conditions

Optical telescopes for GRBs Photometry follow-up (light curves) Late photometry **Spectrometry** Early photometry Gamma trigger t0:t0+300s 5 Swift **INTEGRAL FERMI** 10 Apparent R magnitude 15 20 Light curves from 25 GRBase 10⁰ 10^{1} 10² 10³ 10⁴ 10⁵ 10⁶

Time after the GRB trigger (sec)

Optical telescopes for GRBs Classification of telescopes

Gamma trigger

t0:t0+300s

Swift INTEGRAL FERMI

Early photometry t0+30s : t0+2h
MASTER MITSuME Rotse TAROT UVOT TNT PROMPT REM

Small diameters 20 cm to 1 meter Rapid slewing Autonomous

Late photometry t0+3min : t0+1week

GROND Shajn NOT RATIR P60 Tautenburg Faulkes Liverpool RTT150

Medium diameters 1 to 4 meters Standard slewing Human check

Spectrometry t0+1h : t0+1day

VLT Gemini Keck Magelan

Large diameters 4 to 11 meters Slow reactivity Human manual

Optical telescopes for GRBs

Gamma ray burts Coordinate Network Circular production

GCN circular productions

TAROT + Zadko – Heterogeneous telescope network

TAROT – Small telescopes optimized for GRBs

Autonomous. No human presence

Calern 1998 (100 GRB alerts)

26 papers in refereed journals 196 GCN circulars

181 alerts, 58 optical emissions seen. 36 GRB observed during prompt emission, 11 optical transient seen during prompt emission. 32% optical emissions seen. 20% GRB observed during prompt emission, 6% optical transient seen during prompt emission.

TAROT & Zadko – Early observations

The trail technique to keep a good temporal resolution during the first minute

How to prepare optical observations after 2020 ? The secrets of the success of an optical robotic telescope

Fluids

Electric power reliability (UPS) Computer reliability Network reliability (+ easy access)

Security

Security (meteo, etc.) managed by a Programmable Logic Controller (not by computer) Redundant security devices

Hardware

Roof reliability Rapid slewing mount with limited flexions Use motors with absolute encoders Use industrial motor controlers

Software

Software based on agents instead of one executable Daily check procedure (electronics, pointings, detector response) Feed routine observations by a web service (or a web form) Quick look of images from a simple web page Web tool to do maintenance (manual mode)

How to prepare optical observations after 2020 ? New triggers : Multiwavelength + multimessagers

How to prepare optical observations after 2020 ? An example : SVOM F-GFT (expected in 2020)

Rapid observation of cataclysmic events

Detectivity

- => Fast slewing mounts
- => Large aperture

Ground Follow-up Telescope France + Mexico @ San Pedro Martir (Mex.)

 The best
optical telescope for GRB photometry

> rapid localization high redshifts prompt emission faint emissions

Price : ~3 M€ / unit

How to prepare optical observations after 2020 ? An example : SVOM F-GFT (expected in 2020)

The GFTs need some ECLAIRs informations in the first VHF message to optimize observation strategy

How to prepare optical observations after 2020 ? An example : SVOM F-GFT (expected in 2020)

The GFT can provide a estimation of the redshift

an optical spectra during the prompt emission

How to prepare optical observations after 2020 ? TAROT Reunion a prototype of low cost reliable small robotic telescope

Rapid observation of cataclysmic events

Large fields of view

=> Fast slewing mounts

=> Small focal length optics Network of telescopes Neutrinos Gravitational waves Supernovae Early GRBs

> Wide FoV = 4° x4° Limiting mag. = 17 in 120s No maintenance Very high speed mount

Price : ~80 k€ / unit

Robotic telescope observations when there is no event TAROT supernovae

Discovery of 15 nearby supernovae since 2007

- \rightarrow Early observations (less than 3 days after the explosion)
- \rightarrow Photometry follow-up (SNIa calibration if Cepheids)
- \rightarrow Searching for shock breakouts

Robotic telescope observations when there is no event TAROT occultation of stars by minor planets

92 positive occultations since 2004

- \rightarrow Measure duration of the disapearance of a star
- \rightarrow Combine durations from various observatories
- \rightarrow Determine the shape at a kilometric precision

Case of the TNO (50000) Quaoar

Robotic telescope observations when there is no event TAROT occultation of stars by minor planets

92 positive occultations since 2004

- \rightarrow Determine the shape at a kilometric precision
- \rightarrow In case of double body, help to determine the density

Robotic telescope observations when there is no event TAROT photometry follow-up of quasars

14 quasars photometry follow-up since 2011

- \rightarrow Determine their activity for the reference frame of GAIA
- \rightarrow Eliminate the too active quasars to limit noises of the absolute celestial frame

How to prepare optical observations after 2020 ? CONCLUSIONS

Understanding GRBs in multiwavelength

- 1/4 of GRBs is not compatible with the standard theory (fireball)
- Collect more data with a good time sampling \rightarrow dedicated telescopes (GFT, GWAC)
- Lack of alternative non standard models to explain observations

The design of telescopes for GRB must include new messengers (GW, neutrino, FRB)

Participate to research on GW optical counterparts

- Scan >100°2
- Small focal length telescopes \rightarrow large field of view (>4°)
- Aperture diameter is limited by the price !

Participate to research on neutrinos optical counterparts

- Error box of about 2 degrees.
- New neutrino detector $KM3NET \rightarrow$ search on electronic neutrinos (no Earth noise)

Participate to research on FRB optical counterparts

- Error box of about 0.5 degree.
- Follow the Parkes pointings (public in april 2018).