

Predictions for SVOM GRB rates The future SVOM GRB sample

Frédéric Daigne (Institut d'Astrophysique de Paris)

GRB science

	Swift	Fermi	SVOM
Prompt	Poor	Excellent 8 keV-100 GeV	Very good 4 keV-5.5 MeV + visible
Afterglow	Excellent	/	Excellent
Redshift	~1/3	/	~2/3

Physical mechanisms at work in GRBs

- nature of GRB progenitors and central engines
- acceleration & composition of the relativistic ejecta
- particle acceleration, non-thermal radiative processes
- interaction of the ejecta with the circumburst medium

Diversity of GRBs: event continuum following the collapse of a massive star

- X-ray rich GRBs/X-ray Flashes and their afterglow
- underluminous GRBs/ultra-long GRBs/...
- GRB/SN connection

Short GRBs and the merger model

- GW emission from the final stages of orbital decay and merger
- Production of r-process elements in the neutron-rich merger ejecta (kilonovae)

GRB trigger

ECLAIRs rates

- Simulations of GRBs in ECLAIRs (S. Schanne)
 - Model of the instrument+trigger
 - Realistic backgroud
- Simulated GRBs (S. Antier & FD):

Catalog	Size	Ref	Note	
BATSE	2037	Goldstein+ 13	Known detection efficiency Long & short GRBs	
BATSE (spectroscopic)	333	Kaneko+06	Spectral evolution	
HETE2 (FREGATE+WXM)	58	Pelangeon+ 08	Soft GRBs: XRF, XRR	
Swift BAT	391	Sakamoto+ 11	Redshift (~1/3)	
Fermi GBM	783	Gruber+ 14	Accurate prompt spectrum	
Swift BAT+GBM/Konus	84	Heussaff+ 15	Redshift + prompt spectrum	

 For each simulated GRB: compute detection probability (averaged over field of view assuming isotropic distribution for GRBs)

ECLAIRs rates

- Simulations: ECLAIRs detection probability per bin of peak flux
- Normalize from:
 - log N-log P BATSE corrected for efficiency (Stern+ 02)
 - ECLAIRs field of view & duty cycle
- Result: log N-log P ECLAIRs for BATSE-like GRBs

Predicted BATSE-like GRB rate in ECLAIRs:

Low: 46±6 GRB/yr

High: 57±8 GRB/yr

More than BATSE-like GRBs ?

- ECLAIRs low-energy threshold: 4 keV
- HETE-2: 18% of soft events XRF+XRR (Pelangeon+ 08)
- Fermi/GBM: 9% of soft events XRR only (Jenke+ 16)
- ECLAIRs simulations: high detection efficiency for these XRR/XRF
- Expected X-ray benefit for ECLAIRs = 9 to 18%

- ECLAIRs uses an image trigger like Swift/BAT, with longer timescales
- Simulations: expected image benefit for ECLAIRs = 9% (comparing image trigger and count rate trigger)

ECLAIRs rates

Results:

	Predicted GRB rate in ECLAIRs (GRB/yr)					
	6.5 σ (~alert threshold)		10σ (~slew threshold)			
	Low	High	Low	High		
BATSE-like GRBs	46 ± 6	57 ± 8	40 ± 6	49 ± 8		
X-ray benefit	4 ± 1	10 ± 1	4 ± 1	9 ± 1		
Image benefit	4 ± 1	5 ± 1	4 ± 1	4 ± 1		
Total	54 ± 7	72 ± 10	47 ± 7	62 ± 10		

ECLAIRs GRBs

Detection probability in the hardness-duration plane:

Original catalogs

Detection probability by ECLAIRs

- Classical long GRBs
- Ultra-long GRBs (cf. D. Götz's talk)
- Soft GRBs (XRR, XRF)
- Short GRBs (but with a moderate efficiency)

GRB trigger

Simulation of a short GRB with an extended soft tail (GRB 990712A)

CEA+LUPM+IHEP

 ECLAIRs trigger efficiency can be improved using GRM information (lower threshold: see S. Schanne's talk)

swUM « white paper » arXiv:1610.06892

GRB trigger

SVOM sensitivity to short GRBs is improved thanks to GRM!

Field of view+night+weather+...

(CNES mission simulator/V. Morand)

Simulations of Fermi/GRB bursts

(catalog: Gruber+ 13)

521 bursts (BAND or COMP) including 50 short GRBs

 Simulation in ECLAIRs+GRM (burst on-axis in ECLAIRs, 30° offaxis in GRM) (LUPM+IHEP)

Recovered spectral parameters:

Multi-components spectra: the example of GRB 100724B (Guiriec+ 11)

■ The two components (BB+BAND) are accurately recovered!

Accurate spectral description of the prompt GRB emission over 3 decades (4 keV-5.5 MeV)

Slew requests

Alerts sent to ground (VHF network)

Slew requests

X-ray afterglow

X-ray afterglow

 Simulation of GRB 091020 in ECLAIRs+GRM+MXT (Swift GRB seen also by GBM)

V/NIR afterglow

66% of slews are followed by at least 5 min of visibility for MXT+VT

(CNES mission simulator/V. Morand)

Distance/host galaxy

