

Study of the impact of dead time and computation of the **ECLAIRs** detection plane spectral response

Armelle BAJAT

Supervisors : Jean-Luc ATTEIA Olivier GODET

ECLAIRs presentation - Scientific performances

Energy Band	4 - 150 keV
Active surface of the plane	1024 cm ²
Energy resolution @ 60keV	< 1.5 keV
Time resolution	10 μs
Dead Time	< 5%
Field of view	2.02 sr
localisation error box	< 12 arcmin

- Precise and fast localisation
 - Photons counting with an adapted sensitivity and resolution in time
- Measuring the temporal and spectral properties of the emisgion

ECLAIRs presentation - modules and electronics

UGTS

- 6400 pixels
- 4x4x1 mm³ in CdTe
- 32 pixels per modules
- 25 modules per sector
- 8 independant sectors

- Readout Electronic Sector
- Coding:
 - Time
 - Position
 - Energy
 - Multiplicity
- Computation of the energy onboard
- Detection of events with saturate energy

ECLAIRs presentation - electronic readout operations

ECLAIRs presentation - electronic readout operations

DEAD TIME - Method used

SOFTWARE ANALYSIS

- Use of a code simulating the operation of the electronic chain
- Estimation of dead time for 2 cases
 - 12500 cps/s/ELS
 - 5% of dead time

HARDWARE ANALYSIS

- Test bench
- Input files with random position energies and time
- Analysis output files
- Estimation of the dead time for 2 cases
- Comparison with the software analysis

EXPERIMENTAL PART

- Prototype
- Different sources heights for differents counts rates
- Comparison with previous part

DEAD TIME - Method used

SOFTWARE ANALYSIS

- Use of a code simulating the operation of the electronic chain
- Estimation of dead time for 2 cases
 - 12500 cps/s/ELS
 - 5% of dead time

HARDWARE ANALYSIS

- Test bench
- Input files with random position energies and time
- Analysis output files
- Estimation of the dead time for 2 cases
- Comparison with the software analysis

EXPERIMENTAL PART

- Prototype
- Different sources heights for differents counts rates
- Comparison with previous part

DEAD TIME - Software Analysis

HYPOTHESES

- Input generated automatically
- All events are coded
- 12000 events uniformly distributed over the sector without the mask
- Constant source count rate from 200 to 140000 cps/s/ELS

RESULTS

For 12500 cps/s/ELS:

Pure Dead Time: 1.5% Total Dead Time: 4.5%

DEAD TIME - Method used

SOFTWARE ANALYSIS

- Use of a code simulating the operation of the electronic chain
- Estimation of dead time for 2 cases
 - 12500 cps/s/ELS
 - 5% of dead time

HARDWARE ANALYSIS

- Test bench
- Input files with random position energies and time
- Analysis output files
- Estimation of the dead time for 2 cases
- Comparison with the software analysis

EXPERIMENTAL PART

- Prototype
- Different sources heights for differents counts rates
- Comparison with previous part

DEAD TIME - Hardware Analysis

DEAD TIME - Hardware analysis

HYPOTHESES

- choice of intputs (Poisson distribution for time)
- All multiples are coded
- 10000 events uniformly distributed over the sector
- differents count rates (200- 140000 cps/s/ELS)

RESULTS

For 12500 cps/s/ELS:

Pure Dead Time: 1.3% Total Dead Time: 26.7%

DEAD TIME - Method used

SOFTWARE ANALYSIS

- Use of a code simulating the operation of the electronic chain
- Estimation of dead time for 2 cases
 - 12500 cps/s/ELS
 - 5% of dead time

HARDWARE ANALYSIS

- Test bench
- Input files with random position energies and time
- Analysis output files
- Estimation of the dead time for 2 cases
- Comparison with the software analysis

EXPERIMENTAL PART

- Prototype
- Different sources heights for differents counts rates
- Comparison with previous part

DEAD TIME - Experimental Part

Sources:

²⁴¹Am : 10-60 keV

55Fe: 6 keV

⁵⁷Co: 6keV, 122-136keV

60Co: (MeV)

DEAD TIME SYNTHESIS

The Pure dead time corresponds to the scientific requirement Hardware results under investigation

In process:

- Application to astrophysical sources
- Impact of the mask shadow on the results
- Experimental part

Bajat et al. In prep (sept. 2017)

Spectral response

- Spectral response : energies redistribution
- the detector on the incident spectrum stamp

Detection plane response - Principle of detection

Spectral response : Model

GEANT4 Model

Spectral Model

ECLAIRs detection plane response - First Results

²⁴¹Am

Temp = -20° C

ECLAIRs detection plane response

ECLAIRs detection plane response

ECLAIRs detection plane response - Synthesis

Improvement of the response model First study of statistics parameters

In process:

- Geant4 Model with the environment of the prototype
- Calibration with the Prototype data: extraction of parameters for all detectors
- Incidence angle Impact
- Application to astrophysics sources