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“Requirements”
• What do we want when adding/subtracting images? 

• Maximum sensitivity for all astrophysical 
measurements. 

• Reliable detection of sources/transients. 

• No human involvement. 

• What we do not care about? 

• Image quality metrics (image SNR, sharpness, 
resolution, seeing, …)



Stages in the pipeline
• Image calibration (flat fielding, bias and gain). 

• Finding an astrometric solution. 

• Image alignment (shifting, rotating, removing distortion and 
resampling). 

• PSF, background and zero-point estimation. 

• Identifying bad pixels and particle hits. 

• Image coaddition/subtraction 

• Source/transient detection 

• …



Notation and image model

• Image model: 

• Mj - j’th measurement 

• T - True sky. 

• Pj - j’th PSF 

•     - additive, white Gaussian noise.

Mj = Pj ⌦ T + ✏j

✏j



Coaddition - commonly 
used methods

S =
X

j

↵jMj
Weighted addition methods: 

(Annis et al., 2014 Jiang et al., 2014)

PSF homogenization 
(Desai et al.,)

S =
X

j

↵jKj ⌦Mj

Mj ⌦Kj ⇡ Mref

Speckle imaging methods: 
Lucky imaging 

Speckle interferometry



Problems with existing 
coaddition methods

• No argumentation or reasoning. 

• Reduced sensitivity (5%-25% decrease in survey speed!). 

• “No coaddition method is good for all applications”. 

• Trade-off between resolution and depth. 

• Images with “bad” atmospheric conditions are discarded. 

• Some coaddition methods involve regularized deconvolution (“PSF 
homogenization”) 

• Unstable, introduces spatial correlations and slow. 

• Unclear what further signal processing steps should follow. 

• Even less sensitive than weighted addition! 



Our approach
• Go by the book: 

• Define the simplest statistical task. 

• Find it’s optimal statistic using Neyman-Pearson. 

• Extend the solution to all tasks (if possible). 

• Analyze the solution’s behavior when adding 
realistic complexities to the statistical model. 

• Apply corrections where needed.



Optimal source detection
• Statistical task - detecting point sources. 

• S is the analogue of a match filtered image 

• Has correlated noise! 

• Does not fit our image model.

H0 : Mj = ✏j

H1 : Mj = �p ⌦ Pj + ✏j

S =
P({M}|H1)

P({M}|H0)
= · · · =

X

j

 �
Pj ⌦Mj

�2
j



Sufficient statistic
• Statistical task - detecting point sources. 

• Same trick works for any measurement. 

• S is still not simple to use. 

• Does not fit our image model.

H0 : Mj = ✏j

H1 : Mj = T (✓)⌦ Pj + ✏j

S =
P({M}|H1)

P({M}|H0)
= · · · = ��T (✓)⌦

X

j

 �
Pj ⌦M

�2
j



Proper coaddition
• In fact, any two simple hypotheses about T could 

be tested using S. 

• If S is a matched filtered image, can we find it’s 
“original” image? 
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Properties of the new coadd 
image

• Optimal for all decisions and measurements. 

• Assumes known PSFs and white Gaussian noise. 

• Sufficient statistic - Original data is redundant. 

• 5%-25% more survey speed relative to weighted summation. 

• Even better relative to PSF homogenization. 

• Numerically stable. 

• Local - Can handle spatially changing PSF’s. 

• Indistinguishable from a regular image.



Results
Simulated images of a binary star

Direct 
coadd

Proper 
coadd



Results



Future prospects - coaddition
• One coadd (per color) to summarize a survey 

• Makes all sky surveys compact and distributable for 
everyone. 

• provides 5%-25% more survey speed. 

• Coaddition of speckle images. 

• Proper super resolution (coaddition of under-sampled 
images). 

• Application to high contrast imaging



Advancements in 
Image Subtraction



Subtraction - Notation
• Image model:  

• R - Reference image 

• N - New image 

• Noise is white and Gaussian 

• No assumption on T.

R = Pr ⌦ T + ✏r

N = Pn ⌦ T + ✏n



Problems with current image 
subtraction algorithms

• No argumentation or reasoning. 

• Reduced sensitivity 

• Unclear what further signal processing should be applied 

• False positives. 

• Machine learning sifting of millions of candidates per day 

• Human scanning for final sifting stage. 

• No automatic followup + inevitable 1 hour latency. 

• Numerically unstable. 

• Slow (may be a serious constraint for large surveys).



An unconditional surrender

Frohmaier et al. (2017) Ratio between: 
Flux in a PSF box and 
Flux of the transient

REAL-TIME RECOVERY EFFICIENCIES AND 
PERFORMANCE OF THE PALOMAR TRANSIENT 
FACTORY’S TRANSIENT DISCOVERY PIPELINE 



Existing methods for image 
subtraction

• Phillips & Davis (95) 

• Allard & Lupton (98) 

• Bramich (2000) 

• Gal-Yam et al. (06).

\DPhillips = N̂ � P̂n

P̂r

R̂

DAL = N �K ⌦R

DGY = Pr ⌦N � Pn ⌦R



Optimal transient detection
• Stating the hypotheses: 

• Applying Neyman-Pearson: 

H0 : N = T ⌦ Pn + ✏n

H1 : N = (T + �(q))⌦ Pn✏n

S =
P(R,N |H1)

P(R,N |H0)
=

P(N |R,H1)

P(N |R,H)0

P(R|H1)

P(R|H0)
=

P(N |R,H1)

P(N |R,H)0

Ŝ =
|P̂r|2P̂nN̂ � |P̂n|2P̂rR̂

�2
n|P̂r|2 + �2

r |P̂n|2



Proper image subtraction
• What if we want to identify all types of transients? 

• Including defects and cosmic rays 

D̂ =
P̂rN̂ � P̂nR̂q

�2
n|P̂r|2 + �2

r |P̂n|2
P̂D =

P̂rP̂nq
�2
n|P̂r|2 + �2

r |P̂n|2



Properties of proper image 
subtraction

• Optimally sensitive (with a rigorous mathematical proof) 

• Convolution kernels are local (no problem with spatially varying PSFs).

• 5%-50% more sensitive than past methods.

• Reliable significance and error bars (this in itself increases sensitivity). 

• Closed form (and symmetric to N,R interchange). 

• can correct for source noise and astrometric residuals) 

• Fast. 

• Sufficient for testing/measuring any difference between the images. 

• Can optimally measure all astrometric shifts of point sources.  

• Numerically stable



Simulations - 1



Simulations - 2



Correcting for source noise 
and astrometric noise

• Can separate the transient detection score to the “New” part 
and “reference” part 

• Can bound the influence of source noise using the point-wise 
variance maps of N and R. 

• Can bound the influence of astrometric noise using their pixel 
derivatives 

Sn = N ⌦ kn , Sr = R⌦ kr

VSn = V (N)⌦ k2n , VSr = V (R)⌦ kr

Va =
@Sn
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Correcting astrometric noise



Real data - I



Real data - II



Real data - II continued



Real data - III
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Future prospects - 
subtraction

• Robust, automatic transient detection and followup 

• Will be used by ZTF (Thanks to Brad Cenko, Eran Ofek and Frank Masci). 

• Will be used by BlackGem (Thanks to Paul Vreeswijk). 

• Hopefully, will be used by LSST (being implemented by David Reiss). 

• Increased survey speed 

• Detecting high dynamic range transients 

• How many faint sources we missed so far?  

• TDEs?  

• Collapsars? 

• Differential astrometry (solving for relative astrometry using image subtraction)



Questions?


