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"Requirements”

* \What do we want when adding/subtracting images”

o Maximum sensitivity for all astrophysical
measurements.

e Reliable detection of sources/transients.
e No human involvement.
 \What we do not care about?

* Image quality metrics (image SNR, sharpness,
resolution, seeing, ...)



Stages in the pipeline

Image calibration (flat fielding, bias and gain).
Finding an astrometric solution.

Image alignment (shifting, rotating, removing distortion and
resampling).

PSF, background and zero-point estimation.
|dentitying bad pixels and particle hits.
Image coaddition/subtraction

Source/transient detection



Notation and image model

* Image model:

Mj — Pj @ T —|— Ej
* M;j-Jth measurement

e | - True sky.

 P;-th PSF

e ¢; - additive, white Gaussian noise.



Coaddition - commonly
used methods

Weighted addition methods:
= M.
(Annis et al., 2014 Jiang et al., 2014) S zj:% J
PSF homogenization S = Z a; K; ® M;
(Desai et al.,) ;

M] X K] ~ Mr,aef

Speckle imaging methods:
Lucky imaging
Speckle intertferometry



Problems with existing
coaddition methods

No argumentation or reasoning.

Reduced sensitivity (5%-25% decrease in survey speed!).
“No coaddition method is good for all applications”.

* Trade-off between resolution and depth.

Images with “bad” atmospheric conditions are discarded.

Some coaddition methods involve regularized deconvolution (“PSF
homogenization”)

* Unstable, introduces spatial correlations and slow.
« Unclear what further signal processing steps should follow.

* Even less sensitive than weighted addition!



Our approach

* GO by the book:
* Define the simplest statistical task.
* Find it's optimal statistic using Neyman-Pearson.
* Extend the solution to all tasks (if possible).

* Analyze the solution’'s behavior when adding
realistic complexities to the statistical model.

* Apply corrections where needed.



Optimal source detection

o Statistical task - detecting point sources.
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e Sis the analogue of a match f||tered |mage
* Has correlated noise!

e Does not fit our image model.



Sufficient statistic

Statistical task - detecting point sources.
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Same trick works for any measurement.
S is still not simple to use.

Does not fit our image model.



Proper coaddition

e [n fact, any two simple hypotheses about T could
be tested using S.

* |f Sis amatched filtered image, can we find it's
‘original” image”?
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Properties of the new coadd
image
Optimal for all decisions and measurements.
* Assumes known PSFs and white Gaussian noise.
 Sufficient statistic - Original data is redundant.
5%-25% more survey speed relative to weighted summation.
« Even better relative to PSF homogenization.
Numerically stable.

Local - Can handle spatially changing PSF's.

Indistinguishable from a regular image.



Results

| | Direct Proper
Simulated images of a binary star coadd  coadd
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Future prospects - coaddition

* One coadd (per color) to summarize a survey

 Makes all sky surveys compact and distributable for
everyone.

e provides 5%-25% more survey speed.
« Coaddition of speckle images.

* Proper super resolution (coaddition of under-sampled
images).

o Application to high contrast imaging



Advancements In
lmage Subtraction



Subtraction - Notation

Image model: R=PFP. QT + ¢,
N=PFP, Q1 +¢€,

R - Reference image

N - New image

Noise is white and (Gaussian

No assumption on T.



Problems with current image
subtraction algorithms

No argumentation or reasoning.
 Reduced sensitivity
« Unclear what further signal processing should be applied
False positives.
 Machine learning sifting of millions of candidates per day
 Human scanning for final sifting stage.

 No automatic followup + inevitable 1 hour latency.
Numerically unstable.

Slow (may be a serious constraint for large surveys).



An unconditional surrender
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18 19 20 2 22

Fall<e Magnit’udes ! I | _
15.0< mp <18.0

18.0< mp <19.0

8 -—— 19.0< mp <20

20.0< mp <21.5

—t
7
L
=
o
>
O
O
Q

o st
—
—_—
~

=

3
3
&

Fronmaier et al. (2017)

REAL-TIME RECOVERY EFFICIENCIES AND
PERFORMANCE OF THE PALOMAR TRANSIENT
FACTORY’S TRANSIENT DISCOVERY PIPELINE
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EXisting methods for image
subtraction

/\

+ Phillips & Davis (95) Dt = N ];”R

e Allard & Lupton (98) Dir =N-K®R

* Bramich (2000)

* Gal-Yam et al. (06). Dagy = P,®N - P, ®R



Optimal transient detection

e Stating the hypotheses:

Ho: N=T &P, +¢€,

Hi: N=(T+(q)) ® Ppey
* Applying Neyman-Pearson:
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Proper image subtraction

 What if we want to identity all types of transients?

* |ncluding defects and cosmic rays

: P.N — P,R : 5.P
B P.P,
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Properties of proper image
subtraction

Optimally sensitive (with a rigorous mathematical proof)
Convolution kernels are local (no problem with spatially varying PSFs).
5%-50% more sensitive than past methods.
Reliable significance and error bars (this in itself increases sensitivity).
Closed form (and symmetric to N,R interchange).
e can correct for source noise and astrometric residuals)
Fast.
Sufficient for testing/measuring any difference between the images.
e Can optimally measure all astrometric shifts of point sources.

Numerically stable



Simulations - 1

Alard & Lupton R-N




Simulations - 2




Correcting for source noise
and astrometric noise

 Can separate the transient detection score to the “New” part
and “reference” part

S, =N®k,. S, =Rk,

 Can bound the influence of source noise using the point-wise
variance maps of N and R.

VSn — V(N) ®k72;,7 VSr — V<R) ®kr

* Can bound the influence of astrometric noise using their pixel
derivatives
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Correcting astrometric noise
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Real data - |
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Scorr=5 Alard & Lupton N-R ,,,Alérd & Lupton R-N




Real data - ||
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Real data - || continued




Real data - |l

Subtracting a (very) bright galaxy
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Future prospects -
subtraction

Robust, automatic transient detection and followup
« Will be used by ZTF (Thanks to Brad Cenko, Eran Ofek and Frank Masci).
« Will be used by BlackGem (Thanks to Paul Vreeswijk).
» Hopefully, will be used by LSST (being implemented by David Reiss).
Increased survey speed
Detecting high dynamic range transients
 How many faint sources we missed so far?
e TDEs?
e Collapsars?

Differential astrometry (solving for relative astrometry using image subtraction)



Questions?



