Photometric calibrations

Lessons learnt from CFHTLS

N. Regnault

(LPNHE, Paris)

SNLS / CFHTLS-DEEP MegaCam : 1 deg2 1500 hours on CFHT 1500 hours on 8-m telescopes ~ 500 SNela with spec-id

SNLS / CFHTLS-DEEP MegaCam : 1 deg2 1500 hours on CFHT 1500 hours on 8-m telescopes ~ 500 SNela with spec-id

(Betoule et al, 2014)

× CA 36

μ

Ingredients

- Uniformize measurements
 - i.e correct for spatial / temporal variations of throughput
 - ... without breaking measurement model (SED independent scales)
- Map variability of passbands $-T(\lambda, x, t)$
 - As a function of position on focal plane
 - ... and time (atmospheric variations)
- Metrology chain \rightarrow primary flux reference (s)
 - Star(s), e.g. DA white dwarfs
 - or NIST calibrated lab standard
 - Control of photometry biases: bright standards ↔ faint targets (see Astier et al, 2013)
- Assess accuracy of primary flux reference(s)

Mapping the instrument response

- Dithered observations of dense stellar fields
 - Logarithmically Increasing steps $(1.5' \rightarrow 0.5 \text{ deg})$
 - Observed every ~ 6 months
- Model

 $m(x) = m(x_0) + \delta z p(x) + \delta k(x) \times col$

Maps

(~ 100 pars)

Star mags @ center (~ 100,000 pars)

(Magnier & Cuillandre, 2004; Regnault et al, 2009; Betoule et al, 2013, Rykoff et al, 2017)

Plate scale + ghosts

t (m)

Uniformity (vs. SDSS)

• rms < 3 mmag

Internal consistency of obs.

RMS of ZP variations across focal plane in each of the 5 year SNLS exposures w.r.t average

HSC

• Large distortions

 \rightarrow plate scale variations ~ 20% center \rightarrow corner

 \rightarrow well determined; included in the model

• Model

$$m(\vec{x}) = m_s(\vec{x_0}) + PS(\vec{x}) + zp(\vec{x}) + \vec{k_{ccd}} \cdot \vec{x} + ..$$

- Fit on each COSMOS visit
 - Taking advantage of the large dithers

Still too rigid. X² degrades at edge of FP

HSC

Scans

- by manufacturer (2002)
- at CFHT (2006)
- Slow ageing excluded
- Evolution ~ just after installation?

Impact on cosmology

- Uncertainties in filter transmissions impact
 - Interpretation of flux measurements
 - SN empirical light curve model
 - Distances to SNe
- Improperly mapped filter non-uniformities impact
 - Photo-z
 - Introduces a scale ~ imager FOV in LSS studies

Sensitivity to filter positions

Filter scans @ LMA

- CFHT-LS filters have been decommissioned
- CFHT has agreed to send filters to LMA
- Goals:
 - Full scans of all filters on a grid
 - wavelength accuracy goal < 5 Å
 - At least 4 incidence angles
 - reconstruct effective passbands
 - Look for out-of-band light
 - Environmental studies to check sensitivity of filter coatings to temperature / hygrometry

Filter scans @ LMA (Lyon)

Preliminary results

AOI 0°

In addition to the shift of the filter edge, there is a deformation of the bandpass

Scan along an axis

Flux metrology chain

- Instrument response
 - Measure flux ratios in a single image

Flux metrology chain

- Instrument response
 - Measure flux ratios in a single image

- Calibration transfer
 - HST standard as a primary calibration flux

CALSPEC

- Bohlin, Gordon, Tremblay, 2014
 - 3 DA white dwarfs : G191B2B,
 GD153, GD71
 - Rauch et al, 2013, NLTE models
- The average defines the HST/STIS
 calibration
 - Residuals at the ~ 1% level (in the visible)

SNLS/SDSS (JLA) calibration paths

- Direct observations of SDSS & HST stars
- Several calibration paths
- 0.3% accuracy in gri

(Betoule et al, 2013)

"Supercal" (Scolnic et al, 2015)

• Uses PS1 Full Sky sample as a reference

(Schlafly et al, 2014)

- Recalibrate SN surveys using stars in common with PS1
- Independent path in metrology chain → CALSPEC
- Prefiguration of LSST calibration chain.

Sensitivity to Flux scale

Uncertainties ?

• 2 models implementing the same physics

 $- \sim 4 \text{ mmag } 300 < \lambda < 1000$

- What about physics unaccounted for ?
 - Metal lines found in highresolution spectra of G191B2B
 - Lyman / Balmer line problem
 - Others ?

How can we improve on that ?

- Add more DA white dwarfs to CALSPEC
 - Narayan et al, 2016
- Use a different type of standard ?
 - Instrumental calibration
 - COBP
 - StarDICE
 - ACCESS (e.g. Kaiser et al, 2014)
 - ...

Methodology

First results

• Stability of (source + atmosphere + telescope)

~ 0.5% - 0.7% over ~ 10 - 20 minutes

• Target recision of ~ 0.1% within reach

 \rightarrow if one can accumulate ~ O(50-100) visits per star

Conclusion

- Important redundancy in LSST obs. Strategy
 - Calibration transfer will be easier
 (FGCM + GAIA)
- Potential key issues
 - Filter characterization and follow-up (COBP?)
 - Primary flux reference

E. Rykoff, DES collaboration